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1. Introduction

Open-universe probabilistic models (OUPMs) enable Bayesian inference about the existence
and attributes of latent objects underlying observed data, as well as their interconnections.
Prominent applications include seismic monitoring for global nuclear safety (Arora et al.,
2013; Arora, 2012); information extraction from natural language documents (Russell et al.,
2016); generating realistic 3D scenes with varying numbers of objects (Yeh et al., 2012); “in-
verse graphics” approaches to breaking CAPTCHAs (Mansinghka et al., 2013) and inferring
3D scenes from 2D data (Kulkarni et al., 2015; Zinberg et al., 2019); and simultaneous de-
duplication, cleaning, and record linkage from real-world databases with millions of records
(Lew et al., 2020). Because the state space in OUPMs has a priori unknown dimension,
popular black-box inference algorithms such as Hamiltonian Monte Carlo cannot be applied.
Instead, applications rely on custom MCMC kernels. These kernels use application-specific,
data-driven heuristics to intelligently delete, split, or merge hypothesized objects, “birth”
new objects, and modify the properties of and relationships between objects. Although these
proposals can be designed and justified in the reversible-jump MCMC framework, this is
often challenging. As Brooks et al. (2003) noted, “the application of reversible jump...has
predominantly remained within the domain of the MCMC expert,” due to the difficulty of
deriving and implementing effective RJMCMC kernels.

This abstract introduces a new framework for OUPM inference that makes it easier to de-
sign and implement custom, data-driven kernels. We adapt involutive MCMC (Cusumano-
Towner et al., 2020; Neklyudov et al., 2020), a generalization of reversible-jump MCMC, to
the setting of OUPMs. This enables software to automatically generate correct and scalable
implementations of complex, application-specific kernels from high-level user specifications.
Users design inference programs that propose incremental changes to possible worlds, creat-
ing, deleting, or modifying objects according to data-driven, application-specific heuristics;
these proposals are automatically converted into stationary MCMC kernels via an accep-
t/reject step. To automatically compute the acceptance probability, our approach leverages
program tracing and dependency tracking (for efficient computation of proposal and model
densities) and differentiable programming (for the Jacobian determinant). Preliminary ex-
periments on (1) an auditory scene analysis application (Cusimano et al., 2018) (Figure 3)
and (2) Gaussian mixture modeling with an unknown number of components (Richard-
son and Green, 1997) (Figure 4) show that our approach enables data-driven kernels that
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are faster than generic probabilistic programming language (PPL) inference and generic
birth/death RJMCMC kernels without application-specific customizations.

Related Work. We build on involutive MCMC, introduced by Cusumano-Towner et al.
(2020) as a framework supporting higher degrees of automation for application-specific
MCMC algorithms, and (independently) as a mathematical generalization of many clas-
sic MCMC methods by Neklyudov et al. (2020). Our main theoretical contribution is a
generalization of involutive MCMC to OUPMs. We compare our approach to the generic
ancestral resampling MH algorithm (Wingate et al., 2011) used by many probabilistic pro-
gramming languages supporting OUPMs, such as BLOG (Milch et al., 2005a). Previous
work has explored using application-specific kernels for BLOG models (Milch and Russell,
2012), but these require modifying the BLOG inference engine’s source code and man-
ually deriving parts of the acceptance ratio. The Gen (Cusumano-Towner et al., 2019)
and Stochaskell (Roberts et al., 2019) PPLs support forms of automated reversible-jump
MCMC, but neither features high-level OUPM inference constructs; custom kernels in both
languages operate on low-level program traces, not high-level object-based world represen-
tations, which can compromise both ease of use and asymptotic performance. Furthermore,
the automation technique proposed by Roberts et al. (2019) does not support unrestricted
use of auxiliary variables, and (e.g.) cannot handle the algorithms benchmarked in Figure 3.

2. Open Universe Probabilistic Models

Figure 1 shows an open-universe model for inferring the set of seismic events underlying
observed detections from seismic monitoring stations. A priori, it is unknown how many
events there are, and which detections correspond to the same event (or, in the case of
spurious false positives, to no event at all). Standard probabilistic graphical models are
ill-suited for encoding this sort of uncertainty about the number of objects reflected in a
dataset and their causal relationships. Open-universe probabilistic models enable reasoning
about such problems, by defining generative processes over entire relational domains.

Model specification. An OUPM is fully specified by: (1) a finite set T of object types
(in Figure 1, Event, Station, and Detection); (2) a finite set Nτ of possible origins for
each object type τ (in Figure 1, a Detection may originate from a (Station, Event) pair,
or from a single (Station) that records a false positive); (3) a countable set P of typed
object properties P (τ1, . . . , τn) (such as magnitude(Event) and reading(Detection)); and
(4) a contingent Bayesian network C over a set of random variables that encode the number
of objects that exist, as well as their properties and relationships (Milch et al., 2005b).

Contingent Bayesian networks. The probabilistic structure of an OUPM is given by a
contingent Bayesian network C over an infinite set V of possible variables. These variables
are defined in terms of objects: we write τ((o1, . . . , on), i) to refer to the ith object of type
τ with origin (o1, . . . , on). Then each node v ∈ V of the contingent Bayesian network corre-
sponds to either a number variable Nτ (o1, . . . , on), which represents the number of objects of
type τ with origin (o1, . . . , on), or to a property variable P (o1, . . . , on), which represents the
value of the property P for the given tuple of objects. Like an ordinary Bayesian network,
a contingent Bayesian network uses a directed graph to describe the probabilistic depen-
dencies among variables. However, the edges in a CBN’s graph are contingent: they are
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(a) A simple world model

(b) A region of the contingent Bayesian network for the model

Figure 1: An OUPM for seismic monitoring, inspired by Arora et al. (2013), in which Detections
are received at seismic monitoring Stations. Each Station receives some number of false-positive
Detections, and for each Event, each Station has probability 0.8 of detecting it. Each Event has
an amplitude, and a reading of a Richter-scale magnitude is recorded for each Detection, which is
distributed around the underlying Event’s magnitude when the Detection is not a false-positive.

Algorithm 1 Automated Involutive MCMC for OUPMs
procedure OUPM-IMCMC(p, q, f, x)

(y, qx(y))← SampleAndScore(q, x)
(U,M, y′, J)← ProcessInvolution(f, (x, y))

(x′, p(x
′)

p(x)
)← UpdateWorld(x, U,M)

qx′(y
′)← Score(q, x′, y′)

with probability p(x′)
p(x)
× qx′(y′)× 1

qx(y)
× J return x′ else return x

end procedure
procedure ProcessInvolution(f, (x, y))

. Track continuous reads and writes, manipulation moves M , and property updates U
(Rd,Wr,M,U, y′)← {}, {}, [ ], {}, {}
Execute f , but with

each manipulation command m (create, delete, change, split, merge) ≡ (M ←M ∪ {m})
"proposed[k]" ≡ (if y[k] is continuous: Rd ← Rd ∪{y[k]}; y[k])
"set backward[k] = v" ≡ (if v is continuous: Wr ← Wr ∪{y[k]}; y′ ← y′ ∪ {k 7→ v})
"get(P (o1, . . . , on))" ≡ (v ← x[P (o1, . . . , on)]; if v is continuous: Rd ← Rd ∪{v}; v)
"set P (o1, . . . , on) = v" ≡ (if v is continuous: Wr ← Wr ∪{v}; U [P (o1, . . . , on)]← v)

J ← uninitialized |Rd| × |Rd| matrix
for i in {1, . . . , |Wr|}:
. Execute f with reverse-mode AD to compute ∂Wr[i]

∂Rd[j]
for each j ∈ {1, . . . , |Rd|}

J [:, i]← ∇Rd(Wr[i])
return (U,M, y′, |det J |)

end procedure

labeled with predicates, involving the other possible variables, determining the conditions
under which they are active. The conditional distribution for a variable v, pv(ω[v] | ωPaω(v)),
may depend only on v’s active parents Paω(v) in a particular possible world ω.

Induced probability distribution over minimal self-supporting instantiations.
Fixing a set U ⊆ V of observed variables (in Figure 1, {detections()}), the CBN C can be
used to define a probability distribution over minimal self-supporting instantiations (MSSIs)
for U : finite assignments w to a subset of variables vars(w) ⊆ V, where U ⊆ vars(w), such
that (1) w is self-supporting—if v ∈ vars(w) and u ∈ Paw(v) then u ∈ vars(w); and (2) w is
minimal—if any variable v 6∈ U were removed from w it would no longer be self-supporting.
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(b) An involutive MCMC kernel consisting of a proposal generative function and an involution.
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(a) A pair of corresponding forward and reverse moves made by the MCMC kernel defined in (b).

Figure 2: (a) An execution of a MCMC kernel transforming the state of the seismic monitoring model
on the left to that on the right. The move, with random choices shown above the right arrow, posits
a new event to explain a false positive detection. The involution sets the new event’s amplitude
to 10r, converting Richter-scale magnitude r to an event amplitude, so the acceptance probability’s

(d(µ◦f
−1)

dµ (x, y)) term is log(10)10r; our system calculates this via automatic differentiation. The

kernel can also make the reverse move (←). (b) The involutive MCMC kernel visualized in (a).

Let W be the set of all possible minimal self-supporting instantiations for a fixed set U
of observed variables, and let vars(W) = {vars(w) | w ∈ W} be the set of possible sets-
of-variables that can be jointly specified by a minimal self-supporting instantiation. For
v ∈ vars(W), let vd be the set of all possible joint assignments to the discrete variables in
v. Then we can define a reference measure µ over the space W of MSSIs, given by

µ(E) =
∑

v∈vars(W)

∑
wd∈vd

λ|v|−|wd|({w′c | w′ ∈ E∧vars(w′) = v∧∀v ∈ vars(wd), w
′[v] = wd[v]}),

where wc is the vector of values of the continuous variables in an MSSI w, and λk is the
Lebesgue measure on Rk. With respect to µ, the probability density for the OUPM, as a
distribution over MSSIs, is given by p(w) =

∏
v∈vars(w) pv(w[v] | {u 7→ w[u] | u ∈ Paw(v)}).1

1. Milch et al. (2005b)’s formulation of contingent Bayesian networks does not support continuous random
variables. See Appendix B for a more careful development of CBNs, and an extension (to our knowledge,
novel) to the continuous-variable case.
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Figure 3: An OUPM for auditory perception. (a) A waveform (left) is observed as a spectrogram
in the frequency domain (center), from which we infer the number and type of constituent sound
sources that together explain the observed data (right). (b) Convergence profiles of 4 MCMC kernels;
the two data-driven iMCMC kernels outperform generic PPL and generic RJMCMC kernels. (c)
Approximate posterior samples reflecting typical failure modes of non-data-driven kernels.

3. Involutive MCMC for Open Universe Models

An involutive MCMC kernel (Cusumano-Towner et al., 2020; Neklyudov et al., 2020) for a
target density p on a measure space (X,ΣX , µX) uses a three-step process to transform a
state x into a next state x′. First, auxiliary variables y are sampled from a state-dependent
proposal with density qx, defined over a measure space (Y,ΣY , µY ). Second, an involution2

f is applied to (x, y) to obtain (x′, y′): x′ is the proposed next state, and y′ is an auxiliary
variable value that would cause the kernel to propose the old state x from the new state
x′ (since f(x′, y′) = (x, y)). Third, an acceptance probability α(x, y, x′, y′) is computed.
With probability α, x′ is the Markov chain’s next state; otherwise the state x is repeated.
Cusumano-Towner et al. (2020) show that this process yields a stationary kernel for p when

α(x, y, x′, y′) =
p(x′)qx′(y

′)

p(x)qx(y)
×
(
d(µ ◦ f−1)

dµ
(x, y)

)
, (1)

where d(µ◦f−1)
dµ is the Radon-Nikodym derivative of the pushforward of µ = µX×µY through

f with respect to µ. In general, this does not yield a constructive procedure for computing
this Radon-Nikodym derivative, but Cusumano-Towner et al. (2020) show that when p and
q are distributions over a space D of finite dictionaries, i.e., finite sets of key-value pairs,
the Radon-Nikodym derivative can be computed as the determinant of a Jacobian matrix.
It turns out (Theorem 1) that a similar result holds when p is an open-universe model.
Suppose f is an involution on the space W × D, and that there is a countable partition
{Ci} of W ×D such that: (i) (x, y) ∈ Ci =⇒ f(x, y) ∈ Ci, (ii) for all (x, y) ∈ Ci, the total
number of continuous values in minimal self-supporting instantiation x, plus the number of
continuous values in dictionary y, is constant, and (iii) for each Ci, for (x, y) ∈ Ci, there

2. An involution is a function that is its own inverse: f(f(x, y)) = (x, y).
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is a differentiable bijection hi : Rki → Rki mapping the continuous values in x and y to
continuous values in x′ and y′ (where (x′, y′) = f(x, y)). Then, we have:

Theorem 1 For any open universe model with density p, any collection of distributions
over finite dictionaries with densities qx, and any involution satisfying the above conditions,

involutive MCMC with α(x, y, x′, y′) =
p(x′)qx′ (y

′)
p(x)qx(y)

×|det(Jhi(x, y))| is stationary for p, where

Jhi(x, y) is the Jacobian of hi at the continuous variables of (x, y), and i is s.t. (x, y) ∈ Ci.

The proof involves a translation to the finite dictionary case, and exploits the structure of
minimal self-supporting instantiations to guarantee the necessary properties of f .

4. Automation of Acceptance Probability via PPLs and AD

We have extended the Gen probabilistic programming system (Cusumano-Towner et al.,
2019) with new constructs for OUPMs (sample code in Figure 1) and automated involutive
MCMC for these models (Figure 2, Algorithm 1). The contributions are: (1) a new model-
ing language for open-universe models, capable of efficiently simulating MSSIs, evaluating
densities, and modifying world states; (2) a new DSL for defining object-based involutive
MCMC proposals (Appendix C); and (3) an automated implementation of involutive MCMC
for open-universe models, which automatically calculates acceptance ratios via probabilistic
and differentiable programming techniques (Algorithm 1). See Appendix D for more details.

5. Experiments

Auditory scene analysis. We implemented a variant of Cusimano et al. (2018)’s model
of human auditory scene perception, which is based on an OUPM of sound sources with
properties including amplitude, type, pitch, and duration. See Figure 3 for an example
problem, and Appendix A.2 for details. We implemented two custom, data-driven kernels:
a data-driven sound detection kernel (Figure 11) that applies image-filtering and edge-
detection to frequency-domain spectrograms and proposes new audio sources to explain
sounds it detects in the data but not in the currently-hypothesized world, and a data-
driven sound splitting kernel (Figure 12) that splits long sounds into shorter ones at
endpoints detected in the observed soundwaves. We also implemented two baseline inference
strategies: an ancestral resampling kernel (Figure 9) based on generic PPL inference in
BLOG; and a generic birth/death RJMCMC kernel (Figure 10) that proposes to create a
sound with parameters generated from the prior, or delete a sound. Figure Figure 3(b) shows
quantitative performance comparisons indicating superior performance for custom data-
driven kernels. Common failure modes of the generic kernels are illustrated in Figure 3(c).

Open-universe Gaussian mixture modeling. We also implemented Richardson and
Green (1997)’s data-driven inference algorithm for clustering in a Gaussian mixture model
with an unknown number of components. See Appendix A.1 for details, including an illus-
tration in Figure 4. We have found that BLOG inference typically fails to accept moves to
world states with different numbers of clusters, whereas the data-driven algorithm rapidly
mixes. Note that Richardson and Green (1997)’s algorithm includes a split-merge kernel
with a Jacobian term that our approach calculates automatically.
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Appendix A. Experimental Details

A.1. Open-universe Gaussian Mixture Model.

Richardson and Green (1997) develop a series of highly data-driven MCMC kernels for
a Gaussian mixture model with an unknown number of mixture components. Here we
compare their algorithm, implemented using our system for involutive MCMC in OUPMs,
to the generic inference engine in BLOG.

The model is as follows. The number of mixture components, k, is a Poisson random
variable. The mixture weights and the parameters of each mixture component are drawn
from the appropriate conjugate priors:

w1, . . . , wk ∼ Dirichlet(δ1k) µj ∼ N (ξ, 1/κ) σ2j ∼ inverse-gamma(α, β),

where 1k denotes a vector of ones in Rk; wj , µj , and σ2j denote the weight, mean, and
variance of the j-th mixture component respectively; and α, β, δ, κ, and ξ are fixed hyper-
parameters. Lastly, for the i-th data point we sample a cluster allocation, and given the
cluster allocation, we sample a value from the assigned cluster; ie.

zi ∼ Categorical(w1, . . . , wk) yi ∼ N (µzi , σ
2
zi)

Our involutive MCMC proposal consists of first updating the weights, means, variances,
and allocations using Gibbs updates, and then performing a split or merge move to change
the number of clusters. The Gibbs updates are given by

w1, . . . , wk| . . . ∼ Dirichlet(w1 + n1, . . . , wk + nk)

µj | . . . ∼ N

(
κξ + σ−2j

∑
zi=j

yi

σ−2j nj + κ
,
(
σ−2j nj + κ

)−1)
σ2j | . . . ∼ inverse-gamma(α+

1

2
nj , β +

∑
zi=j

(yi − µi)2)

p(zi = j| . . .) ∝ N (µj , σ
2
j ),

where nj denotes the number of data points allocated to the j-th cluster. Our merge moves
consist of choosing indices j1 6= j2 and j∗ uniformly at random and merging the j1-th and
j2-th clusters into the j∗-th cluster. We ensure that the zeroth, first, and second moments
of the newly generated cluster match the corresponding moments in the mixture of the
original clusters; i.e.

w∗ = w1 + w2

w∗µ∗ = w1µ1 + w2µ2

w∗(µ∗ + σ2∗) = w1(µ1 + σ21) + w2(µ2 + σ22). (2)

To ensure ergodicity, our split procedure relies on three auxiliary variables

u1 ∼ beta(2, 2) u2 ∼ beta(2, 2) u3 ∼ beta(1, 1),
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(a) Ground Truth Clusterings 
(colored) and Data (black)

(b) Two Samples from the Inferred Posterior: 
Richardson & Green’s Data-driven MCMC (top), 
BLOG Ancestral Sampling (bottom)

(c) Trace Likelihoods vs. Sample 
number for Richardson & 
Green’s algorithm 

Figure 4: Gaussian Mixture Model Inference Experiment Results

and generates new clusters according to

w1 = w∗u1 w2 = w∗(1− u1)

µ1 = µ∗ − u2σ∗
√
w2/w1 µ2 = µ∗ + u2σ∗

√
w1/w2

σ21 = u3(1− u22)σ2∗w∗/w1 σ22 = (1− u3)(1− u22)σ2∗w∗/w2. (3)

Using (2) and (3), we can derive our involution’s Jacobian matrix (leaving out rows and
columns which merely copy a value):

J =



µ∗ σ2
∗ w∗ u1 u2 u3

w1 0 0 u1 w∗ 0 0

µ1 1 −
u2

√
w2
w1

2σ∗
0 −

u2σ∗
√
−u1−1

u1

2u1(u1−1) −σ∗
√

w2
w1

0

σ2
1 0 −u3w∗(u22−1)

w1
0

u3σ2
∗(u22−1)
u21

−2u2u3w∗σ2
∗

w1
−w∗σ2

∗(u22−1)
w1

w2 0 0 1− u1 −w∗ 0 0

µ2 1
u2

√
w1
w2

2σ∗
0 −

u2σ∗
√
− u1
u1−1

2u1(u1−1) σ∗
√

w1
w2

0

σ2
2 0

w∗(u22u3−u22−u3+1)
w2

0
σ2
∗(u22u3−u22−u3+1)

(u1−1)2
2u2w∗σ2

∗(u3−1)
w2

w∗σ2
∗(u22−1)
w2


.

Given a specification of the inference kernel, our system automatically calculates
this Jacobian matrix and its determinant

|det J | = w∗|µ1 − µ2|σ21σ22
u2(1− u22)u3(1− u3)σ2∗

without the user needing to work through this derivation.
Figure 4 shows representative results, in which the involutive MCMC proposal accurately

recovers the true latent clusters, whereas the ancestral sampling proposal only roughly
narrows down the component parameters.

11
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type Cluster

type Datapoint

number Cluster() ~ poisson(λ) + 1
number Datapoint() = NUM_DATAPOINTS # global constant

property mean(::Cluster) ~ normal(ξ,1/κ)
property var(::Cluster) ~ inverse_gamma(α_v, β_v)
property unnormalized_weight(::Cluster) ~ gamma(α_w, β_w)

property function cluster(::Datapoint)

  clust_to_un_weight = Dict(c => get(unnormalized_weight(c))

                         for c in get_object_set(Cluster()))

  cluster ~ unnormalized_categorical(clust_to_un_weight)

  return cluster

end

property function value(d::Datapoint)

  cluster = get(cluster(d))

  value ~ normal(get(mean(cluster)), get(var(cluster)))

  return value

end

observation_model function get_datapoints()

  return [get(value(Datapoint with index i))

                         for i=1:get_number(Datapoint())]

end

20 number function Station()

21  return 2

22 end

23 number function Event()

24   return num ~ poisson(5)

25 end

26 number function Detection(:: Station)

27    return num ~ poisson(4)

28 end

29 number function Detection(:: Station, :: Event)

30   return num ~ Int(bernoulli(0.8))

31 end

32 observation_model function detections()

33  evts = [Event(i) for i=1:get number Event()]

34  sts = [Station(i) for i=1:get number Station()]

34  fp_dets = [Detection(st, j) for st in sts,

j=1:get number Detection(st) ]

35  real_dets = [Detection(st, evt, j) for

      st in sts, evt in evts, j=1:get

      number Detection(st, evt) ]

36  detections = union(fp_dets, real_dets)

37  return [get reading[d] for d in detections]

38 end

detections()

#Event()

#Detection(Station(1), Event(1))

#Detection(Station(1), Event(2))

magnitude(Event(1))

reading(Detection(Station(1), Event(1), 1))

reading(Detection(Station(2), Event(1), 1))

#Event() >= 1

#Event() >= 2

#Event() >= 1

#Event() >= 1

...

...

...

(a) A simple world model

(b) A region of the contingent Bayesian network for the model

Figure 5: Gaussian mixture model with an unknown number of components. Instead of imperatively
sampling cluster weights w1, . . . , wn ∼ Dirichlet(δ1k), in our model, each cluster has an unnormalized
cluster weight property sampled from a Gamma distribution; normalizing these then sampling clus-
ters from the resulting distribution is equivalent to sampling clusters according to weights sampled
from a Dirichlet.

Figure 6: Data-driven Gaussian mixture model split/merge kernel from Richardson and Green
(1997).
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A.2. Auditory Scene Interpretation.

Auditory scene analysis Bregman (1994) is a perception task that involves separating an au-
dio waveform into individual sound sources when the number and properties of the sources
are unknown a-priori (Figure 3a). Recently, Cusimano et al. (2018) proposed a compu-
tational model of human auditory scene analysis based on an open-universe probabilistic
model of sound sources, and showed that probabilistic inference in this model based on
MCMC is able to qualitatively reproduce human inferences about auditory scenes, includ-
ing reporting ambiguity in the same situations as humans.

The model. We developed a simplified version of the model of Cusimano et al. (2018)
that uses a prior distribution on the number of sounds and the type of each sound (‘tone’
or ‘white noise’). Tones have an unknown frequency, onset time, and duration, and white
noise sounds have an unknown amplitude, onset time, and duration.

(a) A simple world model

(b) A region of the contingent Bayesian network for the model

Figure 7: Our OUPM for audio inference.

Figure 8: Performance of different inference ker-
nels, measured on 100 randomly-generated audio
scenes with 3 underlying sounds.

Inference Experiments. We implemented four involutive MCMC kernels for this model
in our extended version of Gen. We performed experiments applying these kernels to the
audio waveform shown in Figure 3a, which consists of a short tone, followed by a short period
of white noise, followed by a short tone at the same frequency as the first tone (Cusimano
et al., 2018). When the noise is very loud, humans tend to hear one continuous tone
temporarily obscured by a loud noise, whereas when the noise is quiet, humans hear two
distinct short tones, with noise in the middle. Our example uses a softer noise, and our
best-performing inference programs, which use application-specific kernels implemented via
our framework, recover the true decomposition (two tones separated by noise). However,
generic inference kernels often incorrectly infer a single long tone (Figure 3). In addition to
testing our kernels on the specific audio scene in Figure 3a, we tested them on 100 audio
scenes generated from our model’s prior distribution, with similar results (Figure 8).

Generic Kernels The first two kernels we implemented are not application specific or
data driven. Our ancestral resampling kernel (Figure 9) resimulates a single variable
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from the prior distribution (also ancestrally generating any additional variable values which
need to be added to the world due to the resimulated variable). Our generic birth-death
reversible-jump kernel (Figure 10) randomly proposes to create or delete individual sounds,
proposing new sounds’ properties from the prior. We cycle this kernel with the ancestral
resampling kernel so that property values of existing sounds can more easily be updated.
Figure 3(b) shows that in our experiments, these two kernels converge to inferences of
latent waveforms under which the observed sounds are substantially less likely than under
the latent waveforms our data-driven kernels recover. Figure 3(c) visualizes two common
failure mode these kernels exhibit due to their inability to efficiently incorporate evidence
from the data, and their inability to make proposals to split long sounds into short ones
(which require application-specific logic to calculate endpoints of the new sounds based on
the position of the sound being split). We found that the generic birth-death kernel often
failed to exit a local minimum in which a single continuous tone is inferred instead of two
temporally separated tones of the same frequency (Figure 3c, left). The generic kernel
performs worst—it usually infers one continuous tone, but often also infers spurious tones.

Aside: proposing from the prior in involutive MCMC. To facilitate proposing
values from the prior in involutive MCMC kernels, we have implemented a regenerate

command which can be called from within the involution DSL. (For examples, see Figures
9, 10, and 11.) The command regenerate properties of object samples a value from
the prior for each property of the given object (using the prior as it will appear in x′). This
complicates our picture of involutive MCMC slightly, as there are now random values being
sampled during the execution of the involution function, instead of only in the proposal
probabilistic program. We thus must view the proposal function as only implementing part
of the q distribution and sampling part of y, with the rest of q implemented by the involution
DSL’s regenerate commands.

To ensure involutiveness, when a transition (x, y) → (x′, y′) uses a regenerate com-
mand, the reversing move (x′, y′) → (x, y) must specify in y the value sampled by re-
generation during the forward move. To specify reverse-move values for non-regenerated
values, users use syntax backward[addr] = value, where addr is the address (variable
name) at which the proposal function should sample this value. Since users do not spec-
ify an address for the values in y which are regenerated (unlike values in y which are
sampled in the proposal function), we provide the following additional syntax syntax:
backward[property(object)] = regenerated sets the value in y for regenerating the vari-
able property(object) to the value of property(object) in x, and backward[properties

of object] = regenerated does this for all properties of object. See Section E for more
details.

Custom kernels. Some specific domains, like data-clustering, have seen standard MCMC
kernels developed for data-driven inference, which are fairly conceptually simple but pre-
viously required fairly deriving fairly involved calculations (Richardson and Green, 1997;
Wang and Russell, 2015). In addition to facilitating the implementation of these types
of kernels and removing the need to manually derive acceptance probabilities, involutive
MCMC facilitates the development of data-driven kernels in more complicated domains
which involve complicated logic to use information from data effectively. For instance,
Cusimano et al. (2018)’s experiments used MCMC inference with a proposal based neural-
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Figure 9: Our ancestral resampling kernel, which selects a random variable and samples a new
value for it from the prior. The only complication is that when we sample the number variable
(changing the number of audio sources in the world), we must also generate new properties for any
newly created audio sources. (These properties are also generated from the prior.) For details on
generating values from the prior in involutive MCMC, see Section E.

Figure 10: The generic birth/death kernel either creates or deletes a random sound. When a new
sound is created, its properties are all generated from the prior. For details on generating values
from the prior in involutive MCMC, see Section E.

network transformations of observed soundwaves, implemented in an early version of our
inference programming system. For our experiments in this paper, we developed a roughly
250-LOC image-filtering and edge-detection algorithm to analyze observed soundwaves and
detect possible errors in the currently inferred latent sounds. We called this sound-analysis
program from within 2 involutive MCMC kernels we developed, which our system auto-
mated the implementation of, including efficiently updating world states and calculating
the Jacobian correction term.

Our data-driven sound detection kernel (Figure 11) either proposes to delete a
sound, or to create a new sound which with high probability is proposed at a time and
frequency where our analysis program detected a sound in the data but not the currently
inferred latents. Figure 3(b) and Figure 8 show that this kernel both initially performs
better than the generic kernels, and ultimately converges to a better state.

We also add a data-driven sound splitting kernel (Figure 12), which either proposes
to merge two short tones/noises into a long one, or splits a long sound into two short ones,
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Figure 11: The data-driven sound detection kernel inference kernel used in the audio example.
The kernel uses an image-filtering edge-detection algorithm detect sounds (not shown) to detect
noises and tones in the observed sound waves which are not explained by the currently hypothesized
audio sources. Heuristic scoring functions birth score and death score (not shown) are used to
score the value of adding detected sounds to the latents, or deleting sounds in the current latents.
Based on these scores, either a currently inferred sound is selected to be deleted (a DeathAction), or
a detected sound is selected to be created, with some noise added to the detected sound parameters (a
“birth” move). To ensure reversibility, death moves must select which detected sound will be sampled
during the reversing birth move. If no compatible sounds will be detected during a reversing birth,
the death move will specify that the reversing birth should be “dumb” (non-data-driven) and create
a sound generated from the prior.
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Figure 12: The data-driven sound splitting kernel either chooses to split one long sound into
two short ones, or merge two short tones into a longer one. In the split move, we use a similar edge-
detection algorithm to what was used in the create detected sound kernel to detect changepoints
in the observed sound during the time at which the sound being split occurs. The kernel proposes
an endpoint for the first new sound and a startpoint for the second new sound to be close to the
detected changepoints.
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proposing endpoints for the new sounds based on the analysis of the sounds. Figure 3(b)
and Figure 8 show that the addition of this kernel substantially speeds up convergence.
This is to be expected, since this kernel can integrate information from the data about
another class of possible mistakes in inferred latents: when one sound has been mistakenly
interpreted as two, or vice versa. We cycle both of the data-driven kernels with Gaussian
drift kernels for the parameters of inferred audio sources.

A.2.1. The automated acceptance probability for the data-driven sound
detection kernel

To illustrate the calculations our system automates, we give the acceptance probability
calculation performed when running the data-driven sound detection kernel, including
calculating the Jacobian of the transformation.
Model density. We can factor the density of the model, p(x), as p(x) = p(xL)p(xO|xL),
where xL is the collection of latent variable values in x (the number of underlying sound
sources, and the properties of each one), and xO is the observed sound waves variable in x.
For any x where each variable is within its support, the probability of the latents is:

p(xL) =
1

4

xNS∏
i=1

(p(xD,i)× p(xτ,i)× p(x(α|f),i)× p(xn,ys))

=
1

4

xNS∏
i=1

((
1

L− 0.1
)× (

1

L− 0.1
)× (

{
N (x(α|f),i, 8, 10) xn,i = 1

1
24−0.4 otherwise

)× 0.4xn,i(1− 0.4)1−xn,i)

Here, xNS is the number of sound sources in MSSI x (the value of the number variable
number Source()); xD,i is the duration of the ith audio source in x; xτ,i is the starttime
of the ith audio source in x; xn,i is an indicator which is 1 if the ith source in x is a noise
and 0 otherwise; x(α|f),i denotes the amplitude of the ith sound in x if it is a noise, and the
frequency of this sound if it is a tone. We let L denote the length of the rendered audio
tones (which is a global constant).

The probability of the observation given the latents is:

p(xO |xL) = N (xO, r(xL), I|r(xL)|)

where xO denotes the observed soundwaves in x (from the observed sound property in
Figure 7) represented as a vector, r(xL) denotes the rendering of the latent audio sources
in x into sound-waves, and Ik denotes the k-dimensional identity matrix.
State-dependent proposal density. The state-dependent proposal distribution qx(y) is
parameterized by a current MSSI x. It is a distribution over finite dictionaries, implemented
as a Gen program. Using standard techniques from probabilistic programming, Gen can
automate the computation of densities of dictionaries sampled by the proposal:
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qx(y) =



(1− β(x))φn(x)ynφ(x; yn)yi(βρ(x, yi)θρ(x, yi; yn)ys′ )
yρ(1− βρ(x, yi))1−yρ yb = 0

β(x)·(1−βσ(x))
xNS+1 · (0.4·N (yα;8,10))yn ·(0.6·(37−0.4)−1)1−yn

(L−0.1)2 yb = 1 ∧ yσ = 0

β(x)·βσ(x)
xNS+1 · θn(x)ynθ(x; yn)ys · NT


 yD

yτ

yv(yni)

 ;

 RD

Rτ

Rv(yn)

 ,
 DD(x, ys, yn)

Dτ (x, ys, yn)

Dv(yn)(x, ys, yn)

 ,
0.1 0 0

0 0.1 0

0 0 σv(yn)


 yb = 1 ∧ yσ = 1

Here, xNS is the number of sound sources in MSSI x, and yb determines whether a new
sound source will be proposed; if yb = 1, yσ determines whether the new source will be
proposed using the data-driven edge-detection proposal or from the prior. (In Figure 11, yb
corresponds to do birth; yσ to do smart birth.) yn is an indicator for whether the source
being created/deleted is white noise, as opposed to a tone (yn is objtype in Figure 11
when yb = 0 ∨ yσ = 1, and is proposed via regenerate when yb = 1 ∧ yσ = 0). When
yσ = 1, an index ys is computed determining which of the sounds from the image-filtering
and edge-detection algorithm with the type indicated by yn will be proposed (the index
of sample action in Figure 11). Based on ys, new sound onset and duration parameters
yτ and yD, as well as either a frequency yf or an amplitude yα. When the data-driven
proposal is not used (yb = 1 ∧ yσ = 0), yα (or yf ), yn, and other parameters are proposed
from the model’s prior over sound sources. If yb = 0, a death move is proposed, to delete
sound yi. The variable yρ is introduced to enable the implementation of an involution:
it represents whether the move reversing a proposed death move will be data-driven. If
yρ = 1, ys′ represents which heuristically detected sound source with the type indicated by
yn will be used as the basis to repropose the deleted audio source, in the reverse proposal.
NT (v;R,µ,Σ) denotes the PDF of a multivariate truncated normal distribution with ranges
R, means µ, and covariance matrix Σ, evaluated at v.

The proposal is based on a number of functions, as well as the scene length parameter
L, the standard deviations σα = 4 and σf = 1, and the ranges RD = (0.1, 1), Rτ = (0, L),
Rf = (0.4, 24), and Rα = (−∞,∞). These functions, and some additional functions needed
for their definitions, are described below:

• k(x, yn) is the number of possible sounds to create of type yn detected in state x

• SB(x, i, yn) is a score for the action of creating a sound close to the ith detected sound
of type yn, from a user-written scoring heuristic

• SD(x, i) is a score for the action of deleting the ith sound in the current world, from
a user-written scoring heuristic (a different heuristic from SB)

• πB(x) =
∑1
yn=0

∑k(x,yn)
i=1 SB(x,i,yn)∑1

yn=0

∑k(x,yn)
i=1 SB(x,i,yn)+

∑xNS
i=1 SD(x,i)

is the total score of all detected birth

actions, divided by the total score of all detected birth and death actions

•

β(x) =


πB(s)+π∗BπR

1+πR
xNS ∈ (0, 4)

0 xNS = 4

1 xNS = 0
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is the probability of yb = 1, given x. Hyperparameter π∗B = 0.5 is a prior probability
of doing a birth move, not factoring in the scores assigned to detected actions, and
hyperparameter πR = 0.1 is the probability of making a decision to do a birth vs
death move without considering the scores.

• βσ(x) = 1− 0.05[|θ(x)|>0] is the probability of yσ = 1 given that yb = 1 for MSSI x.

• βρ(x, i) is 0, if removing sound i from x and running image filtering and edge detection
does not find any sounds of the same type as sound i in x, and 0.95 otherwise.

• DD(x, i, yn) is the predicted duration of the ith detected sound source of type yn from
the image filtering and edge detection algorithm applied to x. Similarly, Dτ gives the
predicted onset, Dα the predicted amplitude (if applicable), and Df the predicted
frequency (if applicable).

• v(yn) is the symbol α (amplitude) if yn = 1 and the symbol f (frequency) if yn = 0.

• θn(x) = {0 7→
∑k(x,0)
i=1 SB(x,i,0)∑k(x,0)

i=1 SB(x,i,0)+
∑k(x,1)
i=1 SB(x,i,1)

, 1 7→
∑k(x,1)
i=1 SB(x,i,1)∑k(x,0)

i=1 SB(x,i,0)+
∑k(x,1)
i=1 SB(x,i,1)

} is a

dictionary from values of yn to the probability of choosing to birth an object of type
yn based on the heuristically-assigned SB scores.

• φn(x) = {0 7→
∑
i∈N∩(0,xNS ):xn,i=0 S

D(x,i)∑xNS
i=1 SD(x,i)

, 1 7→
∑
i∈N∩(0,xNS ):xn,i=1 S

D(x,i)∑xNS
i=1 SD(x,i)

} gives the prob-

ability of deleting a noise vs deleting a tone.

• θ(x; yn) is a vector-valued function, taking values in the (k(x, yn) − 1)-simplex. It
represents a distribution over more or less promising detections based on the SB

scores. In particular, θ(x; yn)j = SB(x,j,yn)∑k(x,yn)
i=1 SB(x,i,yn)

.

• φ(x; yn) is a vector-valued function representing a distribution over which existing

audio source of type yn to delete. In particular, φ(x; yn)j = SD(x,j)∑
i∈N∩(0,xNS ):xn,i=0 S

D(x,i)
.

• θρ(x, i; yn) is a vector-valued function, taking values in the (kρ(x, i, yn)-1) simplex,
where kρ(x, i, yn) is the number of detected sounds of type yn from the edge detection
routine, applied to x without sound source i. In particular,

θρ(x, i; yn)j ∝ NT

 xD,i
xτ,i

xv(yn),i

 ;

 RD
Rτ

Rv(yn))

 ,
 Dρ

D(x, i, j, yn)
Dρ
τ (x, i, j, yn)

Dρ
v(yn)

(x, i, j, yn)

 ,
0.1 0 0

0 0.1 0
0 0 σv(yn)


where Dρ

D, Dρ
τ , Dρ

α, and Dρ
f are functions on (x, i, j, yn) giving the duration, onset,

and amplitude/frequency of the jth sound of type yn detected via the detector applied
to x without source i.
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The Jacobian. The create detected sound kernel always either creates or deletes a
sound; we show the Jacobian of the matrix for a move which creates a sound (the transpose of
which is the Jacobian of the matrix for the corresponding deletion). The transition (x, y)→
(x′, y′) during a creation copies over every continuous value in x and y into x′. These
values come from the properties starttime (τ) and duration (D) of each source, and the
amplitude (D) property of each noise or frequency (f) property of each tone. Depending
on the index of the newly-created sound, the indices of each object may change, as is
described in . In particular, when we birth a new source with index i, we must increment
the index of each existing source with index ≥ i. We define the following identifiers for
whether the object at index a is moved to index b, and whether the birth index i equals a
given index a:

Ca→b =

{
1 (i > a ∧ a = b) ∨ (i ≤ a ∧ b = a+ 1)

0 otherwise

Ba =

{
1 i = a

0 otherwise

Using these definitions, we can write the Jacobian of the transformation which copies
starttime (τ), duration (D), and amplitude/frequency (α|f) values for each object as:

J =



x(α|f),1 xτ,1 xD,1 x(α|f),2 xτ,2 xD,2 ... xD,NS+1

y(α|f) B1 0 0 B2 0 0 . . . 0
yτ 0 B1 0 0 B2 0 . . . 0
yD 0 0 B1 0 0 B2 . . . BNS+1

x(α|f),1 C1→1 0 0 C1→2 0 0 . . . 0
xτ,1 0 C1→1 0 0 C1→2 0 . . . 0
xD,1 0 0 C1→1 0 0 C1→2 . . . C1→NS+1

x(α|f),2 C2→1 0 0 C2→2 0 0 . . . 0
xτ,2 0 C2→1 0 0 C2→2 0 . . . 0
xD,2 0 0 C2→1 0 0 C2→2 . . . C2→NS+1

...
...

...
...

...
...

...
. . .

xD,NS 0 0 C2→NS 0 0 C2→NS . . . CNS→NS+1


where

Ja,b =


0 a (mod 3) 6= b (mod 3)

Bb a ≤ 3

Ca→b a > 3

Since this is a permutation matrix, it always has determinant −1 or 1. Our system is
capable of computing this Jacobian using automatic differentiation and discovering this.
As an optimization, in practice, our system can identify that this transformation only
copies values, and thus will have a permutation-matrix Jacobian which it does not need
to take the determinant of, since it will certainly have magnitude 1, as we describe in the
Jacobian sparsity paragraph in Section D. For an description of an inference kernel we
have implemented which has a Jacobian whose determinant’s magnitude is (usually) not 1,
see Section A.1.
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Acceptance probability. When using the involutive MCMC kernel, our system auto-
matically calculates qx(y), qx′(y

′), p(x), p(x′), and J , to compute the acceptance probability
of the move (x, y)→ (x′, y′),

p(x′)

p(x)
× qx′(y

′)

qx(y)
× | det J |

These terms are all equivalent to the above expressions for qx(y), p(x), and J (sometimes
substituting x′ for x or y′ for y). In practice, the q terms are automatically calculated
using the given expressions, while computational optimizations let us avoid calculating the
determinant of the Jacobian matrix (which is just a permutation matrix), and let us avoid
fully calculating p(x′) and p(x), instead directly calculating

p(x′)

p(x)
=
p(x′O|x′L)× 1

4

∏x′NS
i=1 p(x

′
D,i)× p(x′τ,i)× p(x′(α|f),i)× p(x

′
n,i)

p(xO|xL)× 1
4

∏xNS
i=1 p(xD,i)× p(xτ,i)× p(x(α|f),i)× p(xn,i)

=
p(x′O|x′L)

p(xO|xL)
×

{
p(x′D,ys)× p(x

′
τ,ys)× p(x

′
(α|f),ys)× p(x

′
n,ys) yb = 1

1
p(xD,ys )×p(xτ,ys )×p(x(α|f),ys )×p(xn,ys )

yb = 0

where, as above, yb is 1 when y proposes to create a new source and 0 otherwise, and
ys is the index of the source being created/deleted. We can avoid evaluating the product
expressions because the majority of terms in the numerator and denominator cancel out,
since all audio sources except the one being created/deleted are unaffected by the update.
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Appendix B. Open-Universe Models and Contingent Bayesian Networks

In this section, we give a more complete definition of open-universe probabilistic models
and contingent Bayesian networks (outlined in Section 2).

Open-universe probabilistic models are models of relational domains in which the num-
ber of objects, and their link structure, is not known a priori. The usual representations for
structured probability distributions—e.g., probabilistic graphical models—are insufficient
for specifying OUPMs, which typically define an unbounded number of random variables,
with conditional independence relationships that are themselves random. OUPMs can be
specified formally, however, as programs in sufficiently expressive probabilistic programming
languages (Milch et al., 2005a), or as contingent Bayesian networks (CBNs) with infinitely
many nodes (Milch et al., 2005b). Here, we review the standard definition of OUPMs as
CBNs, and extend it to allow for objects with real-valued random properties.

Open-Universe Probabilistic Models. An open universe probabilistic model is a tuple
(T ,N ,P, C), where

• T is a finite 3 set of object types over which the model is defined (e.g., Person).

• N is a finite 3 set of object origin declarations (τ, (τ1, . . . , τn)), with τ, τj ∈ T . An
object origin declaration specifies that a tuple of objects, of types (τ1, . . . , τn) respec-
tively, can be the origin of a separate object of type τ . For example, in a model
of genealogy, we might declare (Person, (Person,Person)) ∈ N , encoding that a pair
of people can be the origin (i.e., parents) of other people. A model’s object origin
declarations determines sets of possible objects Oτ (N ) for each type τ , which are fi-
nite expressions of the form (τ, (o1, . . . , on), i), where (τ, (τ1, . . . , τn)) ∈ N , i ∈ N, and
oj ∈ Oτj (N ) for each j. We call (τ, (o1, . . . , on), i) the ith object of type τ with origin
(o1, . . . , on).

• P is a countable set of typed object property declarations (P, (τ1, . . . , τn)), with τj ∈ T ,
together with value domains dom(P ) for each property. A property represents data
concerning zero or more objects, of types (τ1, . . . , τn) respectively. For example, a
model might declare a property representing the number of flights between two places.

• C is a continuously-extended contingent Bayesian network on the set of possible vari-
ables for (T ,N ,P), {(x, (o1, . . . , on)) | (x, (τ1, . . . , τn)) ∈ P ∪ N ∧ ∀j, oj ∈ Oτj (N )}.
For every origin declaration (τ, (τ1, . . . , τn)) ∈ N , and every tuple (o1, . . . , on) ∈⊗

j Oτj (N ) of possible objects of the correct types, there is a possible number variable
(τ, (o1, . . . , on)), with domain Z≥0, representing the number of objects of type τ that
have objects (o1, . . . , on) as their origin. For every property declaration (P, (τ1, . . . , τn))
and object tuple (o1, . . . , on) of the correct types, there is a possible property variable
specifying the value of the property P (within dom(P )) of the object tuple (o1, . . . , on).
The contingent Bayesian network itself defines a distribution over assignments to these
infinitely many possible variables, as we describe in the following section.

3. The set of types and the set of object origin declarations can be countable without compromising any
results, but existing formal languages for defining OUPMs, including ours, do not provide a way to
declare models where either of these are infinite. It would be interesting to consider whether any natural
applications would require this flexibility, and how languages might be designed to expose it.
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Contingent Bayesian Networks. For a set of possible variables V, let Ω =
⊗

v∈V dom(v)
be the space of all possible assignments of the (possibly infinitely many) variables to values
within their domains. When the domains are discrete, we can use a contingent Bayesian
network (CBN) (Milch et al., 2005b) to define a distribution over such assignments. Anal-
ogously to a Bayesian network on a finite number of variables, a CBN on an infinite set of
variables V specifies an infinite directed graph with V as the nodes. But whereas traditional
Bayesian networks fix the dependency structure, in a CBN the edges are contingent : each
edge u → v is labeled with an event Ωu→v ⊆ Ω within which the edge is active. As in
Bayesian networks, to each variable v we associate a conditional probability distribution
(CPD) pv. But this conditional probability distribution is allowed to depend only on the
active parents of v, which can be formalized as follows: for each variable v ∈ V, the con-
tingent Bayesian network associates a partition Λv of the space Ω, such that if ω1 and ω2

differ only in their assignment to u, and the edge u→ v either does not exist or is inactive
in ω1, then ω1 and ω2 belong to the same component of Λv. Then pv(· | ω ∈ λ) is allowed
to depend on which component λ of the partition ω is in, but nothing else, preventing de-
pendencies on the values of inactive parents. We write Paω(v) for the active parents of the
variable v in state ω. These conditional probabilities together define a probability measure
Π on the space Ω, equipped with a non-standard σ-algebra; we refer the reader to Milch
et al. (2005b) for a detailed treatment.

Minimal Self-Supporting Instantiations. In open-universe models, possible worlds
ω ∈ Ω are generally infinite, because they specify assignments to all of the possible variables
v ∈ V. But for inference, we must work with finite representations. If we can partition Ω
into disjoint equivalence classes Ωi, then we can work with the equivalence classes, using
the distribution p(Ωi) = Π(Ωi). One useful strategy for partitioning Ω is to consider the
minimal self-supporting instantiations of a finite set of variables U ⊆ V. Each component
w of the partition is labeled by a set of variables vars(w) ⊆ V, with U ⊆ vars(w), as well
as an assignment w[v] ∈ dom(v) for each v ∈ vars(w). The component w contains all full
possible worlds ω ∈ Ω that agree with w on the values of each v ∈ vars(w). To ensure that
the components w are indeed disjoint, we only include w as a component if: (1) it is self-
supporting, meaning that for all ω ∈ w, if v ∈ vars(w) and u ∈ Paω(v), then u ∈ vars(w);
and (2) it is minimal, meaning that removing any variable v 6∈ U from vars(w) would cause
it to fail to be self-supporting. Together, these criteria ensure that for any U ⊆ V, the
components w are disjoint, and so p(w) = Π(w) is a valid probability distribution over
minimal self-supporting instantiations w. Conveniently, the probability of each component
w is a simple product of the conditional distributions pv, as in a typical Bayesian network:

p(w) = Π(w) =
∏

pv(w[v] | {w[u] | u ∈ Paw(v)}). (4)

B.1. Contingent Bayesian Networks with Continuous Variables

We now extend the CBN framework to support models with some continuous object prop-
erty domains, so long as no discrete variables count continuous variables as parents.4 (Wu

4. See the following section for a similar but more involved extension to a more general case, where discrete
variables can depend on continuous variables.
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et al. (2018) give a semantics for open-universe models that interprets them as infinite prod-
uct measures over assignments to all basic random variables. This allows them to interpret
OUPMs with continuous and discrete random variables, but does not serve our purposes:
it does not yield a formula for the density of an MSSI in an open-universe model, nor
can it be used to prove that incremental computation strategies for fast MCMC are cor-
rect, as—unlike in CBNs—it does not account for contingent dependency structure among
variables.)

As before, let V be a collection of variables, but now suppose some variables Vc ⊆ V
have continuous domains. Then define the surrogate discrete domain domD(v) of a variable
v to be dom(v) if v 6∈ Vc, and {?} otherwise. A continuously extended CBN defines (1) an
ordinary CBN on the variables V, treating them as having surrogate discrete domains domD,
and (2) conditional probability densities pv(· | {w[u] | u ∈ Paw(v)}) for each continuous
variable v ∈ Vc. The CBN induces a distribution Π on minimal self-supporting worlds,
which we modify to define a probability measure on the space W of continuously extended
minimal self-supporting worlds: pairs (wd, wc) of a minimal self-supporting world wd for
the discrete CBN, plus a real-valued assignment wc to all variables in vars(wd)∩Vc. We let
w[v] denote wc[v] if v ∈ Vc and wd[v] otherwise. The distribution has density

p(w) = Π(wd)×
∏

v∈Vc∩vars(w)

pv(wc[v] | {w[u] | u ∈ Paw(v)}) (5)

with respect to the reference measure

µ(E) =
∑
w

λ|wc|({w′c | w′ ∈ E ∧ vars(w′) = vars(w) ∧ ∀v ∈ vars(w′) \ Vc, w′[v] = w[v]}),

where λk denotes the k-dimensional Lebesgue measure. Using Equation 4 for the first term
of p(w), we see that in the continuous case, we still have the ordinary Bayes net factorization
p(w) =

∏
v∈vars(w) pv(w[v] | {w[u] | u ∈ Paw(v)}).

B.1.1. Continuously-Extended CBNs with Continuous Parents of Discrete
Variables

In the previous section, we define continuously-extended contingent Bayesian networks with
the restriction that no discrete variables have continuous variables as parents. We now give
a more flexible development.

Let V be a collection of variables, where Vc ⊆ V have continuous domains. Define
surrogate discrete domain domD(v) to be dom(v) if v /∈ Vc, and {?} otherwise. Now
define a continuously extended CBN to comprise: (1) an ordinary CBN on the variables
V, treating them as having surrogate discrete domains domD, and (2) a conditional joint
probability density Pc(wc | w) on the values of the continuous variables in a minimal self-
supporting instantiation w given the values of all w’s discrete variables. This CBN induces
distribution Π on minimal self-supporting worlds; as before, we modify this to define the
space W of continuously extended minimal self-supporting worlds, consisting of a minimal
self-supporting world w of the CBN, and an assignment w[v] to each continuous variable in
vars(v)∩Vc. We use wc to denote the assignment of values w[v] to the continuous variables
v ∈ Vc ∩ vars(w) in w. The distribution then has density

p(w) = Π({ω | ∀v ∈ vars(w) \ Vc, ω[v] = w[v]})× Pc(wc|w)
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with respect to the same reference measure from Section 2:

µ(E) =
∑
w

λ|wc|({w′c | w′ ∈ E ∧ vars(w′) = vars(w) ∧ ∀v ∈ vars(w′) \ Vc, w′[v] = w[v]}),

where λk denotes the k-dimensional Lebesgue measure. We note that the density we give
ultimately factorizes, as before, as a marginal probability for the discrete variables and a
conditional density for the continuous variables. (In principle, this alone is not a restriction,
because any distribution over minimal self-supporting instantiations can be factored in this
way.) But in the previous formulation (from Section 2), this factorization was embedded into
the discrete CBN itself, affecting which worlds w counted as minimal and self-supporting
in the first place. The key difference between this section’s formulation and the one in
Section 2 is that here we divorce the factorization of the continuous density from the CBN’s
structure; the edges involving continuous variables in the CBN serve only to determine
which continuous variables are required in a minimal, self-supporting instantiation for an
observed set of variables U .
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Appendix C. Modeling and Inference Programming Languages for
OUPMs

In this section, we briefly outline our modeling language for OUPMs, and our DSL for
writing involutions for involutive MCMC on OUPMs.

OUPM Modeling Language We have developed a new modeling language that is in-
spired by BLOG (Milch, 2006) for use in the Gen probabilistic programming system; for
examples, refer to Figure 1, Figure 5, or Figure 7. Our language extends one of Gen’s
built-in modeling languages in the following ways. We add type statements for declar-
ing object types, property declarations for adding properties, and number declarations for
adding possible origins. When writing world models with our system, users must define
a special property O() with respect to which the model will take minimal self-supporting
instantiations; they do this using an observation model statement. Property and number
declarations are attached to function bodies which together define the contingent Bayesian
network.

In particular, a property statement declares the existence of a property P (τ1, . . . , τn),
and defines a probabilistic generative process for the property’s value. A number statement
(τ, (τ1, . . . , τn)) declares that (τ1, . . . , τn) is a permissible origin signature for objects of
type τ , and declares the distribution over how many objects of type τ there are with each
origin matching (τ1, . . . , τn). (So each property/number statement simultaneously serves
as an object property declaration/object origin declaration, and declares the distribution
over the corresponding property/number variables in the OUPM’s CBN.) The bodies of
number and property declarations are specified in an imperative probabilistic programming
language that induces distributions over finite dictionaries, called traces. The language uses
Julia syntax for defining functions, but may sample random variable values using x ∼ d
statements. A program in the language defines a distribution over traces mapping each
key x to the value sampled from the corresponding d in an execution of the function.
The language is a built-in modeling language in Gen that was augmented with support
for get(P (o1, . . . , on)) statements to access the value of P (o1, . . . , on) in the world; this
introduces an edge in the contingent Bayes net representing the model.

Represented as imperative probabilistic programs, number variables must always have
0 or 1 keys in their traces, corresponding to either deterministically returning a number,
or sampling a single random number. Properties may have more than 1 key in their trace
(so long as the set of possible keys is countable), but when they do, the the property
statement P must be understood as defining a separate object property declaration P =>

k for each k which can appear as a key in the trace. For simplicity, in what follows, we will
assume that each P (o1, . . . , on) is itself a variable with only 0 or 1 keys in its probabilistic
program’s traces; however, the algorithms we give also hold when there can be multiple
keys. We represent MSSIs as sets of pairs (P (o1, . . . , on), t), where P is a number or property
probabilistic program whose type signature matches (o1, . . . , on), and t is a trace for this
variable.

OUPM Involution Programming Language We implement a new OUPM involution
programming language to implement involutions on the space of pairs (x, y), where x is
a world represented as described above, and y is a trace from a imperative probabilistic
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program. Involutions are written as imperative functions which may call special commands
to modify state x in order to produce x′, to access values in x and y, and to specify the new
values for y′. Specifically, the DSL provides support for the following.

• Querying the current model state (x). Users may query the current model state
using the syntax get(P (o1, . . . , on)[a]), which retrieves the sample at address a of the
trace for the property P (o1, . . . , on). Similarly, get number(τ(o1, . . . , on))) retrieves
the number variable value in x defining how many objects of type τ exist with origin
(o1, . . . , on). Several higher-level commands are also provided to access higher-level
discrtete information about the current state, including get object set(τ), which
gets the set of all existing objects of type τ in x.

• Querying the auxiliary randomness (y). The syntax proposed[a] returns y[a],
the value at address a in the random trace y of the proposal program Q.

• Proposing the new model state (x′). The new model state is proposed via
commands that imperatively modify the old state x. They can do this either by
changing the structure of x (by adding or removing objects, and changing the origins
or indices of objects), or by writing new values to object properties.

The commands create, delete, split, merge, and change add, remove, and change
the relationships of objects in the possible world, updating the values of number vari-
ables as necessary. The behavior of each detailed below, and illustrated and described
in Figure 13. Commands that remove objects have the effect of deleting any traces
for variables G(o1, . . . , oi, . . . on) of an object tuple including an oi slated for deletion.
If the deleted object is the origin of other objects (e.g., if an Event with Detections
is deleted), those objects are not automatically deleted: users may either manually
remove them or change their origins using change.

The command set G(o1, . . . , on)[a] = v sets the sample at address a of a trace for
G(o1, . . . , on) to v in the proposed state x′.

• Transforming the auxiliary randomness (y′). The user’s code is responsible for
computing a new trace y′ of Q that makes f into an involution. Intuitively, y′ must
specify the proposal choices that would reverse the current move; in Figure 2, the
forward move that posits a new Event to explain a false positive is reversed by a
move that deletes the newly created Event and reclassifies its sole detection as a false
positive. Users can write to y′ using the syntax backward[a] = v.

C.1. Object manipulation moves

The involution programming language includes commands to create, delete, split, merge,
and change the origins of objects in the world. It is clear that these moves should increment
or decrements number variables in the world to change the number of objects hypothesized
to exist. However, to enable us to delete any object with any index, or create an object at
any index (needed for reversibility), we need some scheme for reindexing the other existing
objects. (For example, when creating a new object 1, the system must “make room” for the
new object 1, for example by incrementing the index of every existing object.) We describe
the reindexing scheme we use.
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create <type> with [origin <origin>] index <index>

create Event with index 2

delete 

merge Detection with origin ■ index 2,3 to index 2

change     to origin (■, ⬤)  index 1

Event()

1 2 3 1 2 3 4
Event()

Event()

1 2 31 2 3 4
Event()

Detection(■)

1 2 1 2 3
Detection(■)

Detection(■)

1 21 2 3
Detection(■)

1 2
Detection(■)

1 2
Detection(■,⬤)

1
Detection(■)

2 3
Detection(■,⬤)

1

delete <object>

merge <object1>, <object2> to index <index> [<changing clauses>...]

change <object> to origin <origin> index <index>

split <object> to indices <index1>, <index2> [<changing clauses>...]

split    to indices 1, 2

  changing 
    to origin (   , Event with index 2) index 1

Station() Detection(  ,  )

Event()

1

11

Event()

21

Station() Detection(  ,  )

11

 merge    ,     to index 1

  changing   
     to origin (   , Event with index 1) index 1

  changing   
     to origin (   , Event with index 1) index 2

Station() Detection(  ,  )

Event()

1

11

1
Event()

2

Station()
Detection(  ,  )

1
1

1

Detection(  ,  )
2

Inserts a new object <type>(<origin>, <index>).

Deletes <object>.

Deletes <object> with type <type> and inserts new=<type>(<origin>, <index>), 
changing all references to <object> to become references to new.

Deletes <object>=<type>(<origin>, <index>) and inserts <type>(<origin>, <index1>), and <type>(<origin>, <index2>).
Performs the change commands specified by the changing clauses, to change the origins of children of <object>.

Deletes <object1>=<type>(<origin>, <index1>) and <object2>=<type>(<origin>, <index2>) and inserts <type>(<origin>, <index>).
Performs the change commands specified by the changing clauses, to change origins of children of the deleted objects.

<type> with [origin <origin>], index <index>

Constructor for the object <type>(<origin>, <index>).

      = Station with index 2

      = Detection with origin    index 1

1

Station()

1

Detection(■)

Figure 13: The object manipulation moves, with examples illustrating how they change the space of
objects in the seismic monitoring example. To construct references objects, for use in the commands,
illustrated with the shapes in this diagram, users use the syntax <type> with origin <origin>

index <index>.

Reindexing. For any given origin tuple of objects, origin, a world contains N
origin
T ob-

jects of type T : {T (origin, 1), ..., T (origin, N
origin
T )}. Deleting the object T (origin, i)

corresponds to a “vector deletion” which decrements the value of N
origin
T and decrements

the index of every object T (origin, j) for j > i. Likewise, adding an object T (origin, i)
is a “vector insertion” which increments N

origin
T and increments the index of every object

T (origin, j) for j ≥ i. In a world model, “changing the index” of an object T (origin, j)
corresponds to updating the world so that the trace for any property or number vari-
able P [o1, ..., T (origin, j), ..., on] becomes the trace for P [o1, ..., T (origin, j + 1), ..., on] or
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P [o1, ..., T (origin, j − 1), ..., on]. Likewise, the update must change any object which has
T (origin, j) in its origin to instead have T (origin, j + 1) or T (origin, j − 1) in its ori-
gin. While in a naive implementation, simple reindexing operations require copying many
traces and greatly perturbing the model state, which causes extreme inefficiency when im-
plementing split/merge and birth/death moves in PPLs like vanilla Gen or Stochaskell, the
use of explicit open universe modeling constructs encodes enough structure for us to imple-
ment these moves very efficiently without copying data, using the object aliasing technique
presented in Appendix D.

30



Transforming Worlds: Automated Involutive MCMC for Open-Universe Probabilistic Models

Appendix D. Automatically Implementing Inference Kernels Efficiently

In this section, we describe in more detail the technique by which we automate the imple-
mentation of inference kernels, and the optimizations we use to produce implementations
performant enough to scale to real-world data sizes. This technique extends upon an ap-
proach for automating involutive MCMC over traces of probabilistic programs described
in Cusumano-Towner et al. (2020). In particular, we are able to exploit sparsity in the
calculated Jacobian to avoid calculating the determinant of a large matrix, and exploit the
conditional-independence relationships encoded in the contingent Bayesian network under-
lying the OUPM to efficiently calculate the state ratio p(x′)/p(x). The performance enabled
by the latter is one of the key benefits of introducing first-class support for involutive MCMC
on OUPMs.

To implement the inference kernel specified by a given proposal q and involution f ,
we must be able to sample and score auxiliary randomness y ∼ qx, produce transitions

(x, y) → (x′, y′), and calculate acceptance probabilities by calculating qx(y), qx′(y
′), p(x′)

p(x) ,

and |det∂(x
′,y′)

∂(x,y) |
5. Since q is a probabilistic program, scoring and sampling are simple;

furthermore, y only contains the minimal number of random choices needed to specify the
transition x → x′, and thus is cheap to score. On the other hand, naive calculation of the
Jacobian term and state ratio may be extremely expensive, since x may be large, for instance
containing a number of variables polynomial in dataset size. As shown in algorithm 3, after
sampling y ∼ qx, we factorize the move into 2 parts, both of which we provide efficient
algorithms for:

1. Running f in an instrumented manner to compute the Jacobian term, y′, and an
update specification U for x

2. Computing x′ and the state ratio from x and U

D.1. Efficiently calculating the Jacobian term

The involutive acceptance probability must include the absolute value of the determinant
of the Jacobian matrix for the transformation of continuous values in (x, y) into those in
(x′, y′). Naively, this can be extremely expensive to calculate, since |x| may be very large,
and determinant calculation is O(n3) in matrix dimension.

Jacobian sparsity. In practice, most transformations (x, y) → (x′, y′) only modify the
values of a small number of continuous values; all other continuous values are simply copied
from (x, y) to (x′, y′) (either at the same address or a new one). Such a copy introduces a
column into the Jacobian matrix which contains all zeros except for one 1 in the position
the value was copied to. Such a column cannot effect the absolute value of the matrix’s
determinant, so we do not need to include rows and columns corresponding to copying in the
matrix. What this means in practice is that in algorithm 2, we only track transformations
of the values which are explicitly read from x or y into values explicitly written into the next

5. In this section, we switch to using the notation |det ∂(x
′,y′)

∂(x,y)
| to mean the same thing as Jhi(x, y)) from

Theorem 1, to avoid the dependency on the symbol hi, and emphasize the idea of differentiating contin-
uous values in (x′, y′) with respect to those in (x, y).
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Algorithm 2 Non-standard interpretation of f for Jacobian calculation
procedure ProcessInvolution(f, (x, y))

. Track continuous reads and writes, manipulation moves M , and property updates U
(Rd,Wr,M,U, y′)← {}, {}, [ ], {}, {}
Execute f , but with

each manipulation command m (create, delete, change, split, merge) ≡ (M ←M ∪ {m})
"proposed[k]" ≡ (if y[k] is continuous: Rd ← Rd ∪{y[k]}; y[k])
"set backward[k] = v" ≡ (if v is continuous: Wr ← Wr ∪{y[k]}; y′ ← y′ ∪ {k 7→ v})
"get(P (o1, . . . , on)[k])" ≡ (v ← x[P (o1, . . . , on)][k]; if v is continuous: Rd ← Rd ∪{v}; v)
"set P (o1, . . . , on)[k] = v" ≡ (if v is continuous: Wr ← Wr ∪{v}; U [P (o1, . . . , on)][k]← v)

J ← uninitialized |Rd| × |Rd| matrix
for i in {1, . . . , |Wr|}:
. Execute f with reverse-mode AD to compute ∂Wr[i]

∂Rd[j]
for each j ∈ {1, . . . , |Rd|}

J [:, i]← ∇Rd(Wr[i])
U ← CompileManipulationMoves(U,M, x) . Get variable updates to implement manipulation moves.
return (U, y′, |det J |)

end procedure

state x′ or reversing randomness y′; all unmentioned continuous values are simply copied
without transformation. This enables us to calculate the determinant of the Jacobian matrix
in O(1) in the size of x for many updates, rather than O(|x|3).

Implementation via nonstandard interpretation. Algorithm 2 shows how to use
nonstandard interpretation of a world involution f to calculate the Jacobian correction
term. Additionally, this interpretation tracks all object manipulation moves which are
called, and all set commands. These are compiled into an object U which fully spec-
ifies the update x → x′. U is a mapping from variable names G(o1, . . . , on) to partial
traces U [G(o1, . . . , on)], which map addresses to values. U specifies to update each trace
x[G(o1, . . . , on)] by overwriting addresses a in this trace with U [G(o1, . . . , on)][a]. We do
not detail the process of compiling object manipulation moves into update specifications; it
is a fairly straightforward process of determining how much each number variable must be
incremented, and changing object alias associations (which are described below).

D.2. Efficiently calculating the state ratio

Because we use world models written using declarative get commands to mediate depen-
dencies among variables in each world, our backend has access to information about which
variables are conditionally independent in each state for any world model. Unlike in existing
systems for programmable inference, which can only track dependency information in very
simple models, this in principle enables us to efficiently calculate the state ratio

p(x′)

p(x)
=

∏
v∈vars(x′) p(x

′[v]|x′Pax′ (v))∏
v∈vars(x) p(x[v]|xPax(v))

(6)

To do this, we only need to consider variables which introduce terms to this ratio that
do not cancel out. These are the variables which have been added to or deleted from x′,
variables whose traces have changed between x and x′, and variables whose dependencies’
values have changed.

Complications vs updating regular Bayesian networks. While world models are
similar to Bayesian networks in that they contain a dependency graph among variables,
they are far more general, and present novel challenges for producing efficient updates. In
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Algorithm 3 Efficient Involutive MCMC for World Models
procedure OUPM-IMCMC(p, q, f, x)

(y, qx(y))← SampleAndScore(q, x)
(U, y′, J)← ProcessInvolution(f, (x, y))

(x′, p(x
′)

p(x)
)← UpdateWorld(x, U)

qx′(y
′)← Score(q, x′, y′)

α← p(x′)
p(x)
× qx′(y′)× 1

qx(y)
× J

with probability α return x′ else return x
end procedure

. Update a trace by executing the corresponding
imperative probabilistic program.
procedure Execute(v = G(o1, . . . , on), x̃, U, x)

r ← 1, C ← get(U, v, {})
t← Trace G(o1, . . . , on), but with
"a ∼ d" ≡ if a ∈ vars(C): C[a]; else: x[v][a]
"get G′(o′1, . . . , o

′
m) ≡ (

if (u = G′(o′1, . . . o
′
m)) /∈ vars(x̃):

. If we might have to update u, we must do
it before accessing its value in v.

(x̃, r′)← Execute(G′(o′1, . . . o
′
m), x̃, U, x)

r ← r × r′
x̃[u] )
if px̃(t) = 0: . In this case, v will be pruned.
x̃← x ∪ {x[v]}
else:
x̃← x̃ ∪ {v 7→ t}
if v ∈ vars(x):

r ← r × px̃(t)
px(x[v])

else:
r ← r × px̃(t)

return (x̃, r)
end procedure

. Update x using U given ord = topologicalorderx.
procedure UpdateWorld(x, U, ord, childrenx)

x̃← {} . New world.
r ← 1 . State ratio.
pos ← 0 . Invariant: variables topologically be-

fore pos have been updated.
Q← priorityqueue(ord, default =∞)
for v ∈ vars(U):
enqueue!(Q, v)

while ¬isempty(Q):
v ← pop!(Q)
if v /∈ vars(x̃):
. Copy variables between pos and ord[v] to

x̃.
x̃ ← x̃ ∪ {u 7→ x[u] : ord[u] ∈ [pos, ord[v]) ∧

u /∈ vars(x̃)}
pos← ord[v]
(x̃, r′)← Execute(v, x̃, U, x) . Update v.
r ← r × r′
if v ∈ vars(x) and retx̃(x̃[v]) 6= retx(x[v]):
for u ∈ childrenx(v):
enqueue!(Q, u)

. Remove variables the observation model no
longer depends on.

(x′, deleted)← prune(x̃, U)
for v ∈ deleted:
r ← r/px̃(x̃[v])
x̃← x̃

∣∣
vars(x̃)\v

return (x′, r)
end procedure

OUPMs, dependencies among variables are not fixed, and may change from state to state
in a model, because the underlying Bayesian networks are contingent. While Milch et al.
(2005b) introduced the contingent Bayesian network formalism to handle such models, they
did not develop algorithms for performing arbitrary updates to these networks. Another
complication is that in a world model, the values of variables in the world may determin-
istically depend on other variables. For instance, it would be valid for the reading of a
seismic Detection to be deterministically equivalent to the magnitude of the correspond-
ing Event. In these situations, the values of variables (readings) may change even if no
update is specified for them, since their values are deterministic functions of other updated
variables (magnitudes). Hence, we cannot compile an update which only visit variables
in the Markov blankets of variables updates are explicitly specified for, unlike in Bayesian
networks. Instead, we introduce algorithm 3, which dynamically tracks changes to the de-
pendency graph and changes to variables which require new variables to be updated. One
important insight is that when we update a variable a, we must visit every variable b which
depends on a to correctly calculate the state ratio. At this time, we can check whether
b’s value is deterministically changed by the update to a, and if so, enqueue the depen-
dencies of b to be updated. This is implemented by procedure UpdateWorld , which pulls
variables relevant to the state ratio or update from a queue, adding new variables to the
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queue as needed. However, complications arise due to the necessity of updating variables
in a topological order of the dependency graph.

Update order. The order in which variables are updated is critical for the correctness
of UpdateWorld. For instance, say b ∈ Pax′(a) and a, b ∈ vars(U). If we update b before
we have updated a, it is impossible to calculate the factor p(x′[b]|x′Pax′ (b)) = p(x′[b]|x′[a])

in the state ratio, because the value of x′[a] is not yet known. Thus, variables must be
updated in the topological order induced by the graph of dependencies in the state x′.
However, we cannot know the topological order of x′ before the update, so we instead use
the topological ordering of the old state x, with special-case logic to handle places where
this order differs from that in x′. This is justified by the fact that efficient updates are only
helpful in transitions x→ x′ producing fairly local changes, and thus we expect that updates
we could implement efficiently will only change the world’s topological order minorly. To
implement this, the update queue Q in UpdateWorld is a priority queue indexed by the
topological order of x. In practice, UpdateWorld must also update the topological order
of x to one for x′; we elide these details, along with details of maintaining the childrenx
lookup table (which gives the children of each variable in the CBN graph) and the details
of implementing the prune function which removes variables which are not needed for a
minimal self-supporting instantiation.

We handle changes in variable order between x and x′ in the Execute procedure, which
updates variable traces. When Execute observes that a variable v gets the value of a
variable u which has not yet been updated, this means that in x, u was topologically later
than v, but in x′, it is topologically before v. In this situation, we recursively call Execute(u)
to ensure that we have updated u to the proper value before it is used to update v.

Runtime. The full algorithm which accounts for topological order updating runs in
O((N + M)(log(N + M) + T )), where N in the number of variables which are updated
or impact the state ratio, M is the number of variables whose indices in the topological
ordering change during the update, and T is the maximum runtime of updating a single
variable in the world. 6 So long as N << |vars(x′)| and M << |vars(x′)| (both of which
are true for most local updates), this algorithm is much faster than generating a new state
x′ from scratch, which takes θ(|vars(x′)|T ).

Aliased object representation. To efficiently implement object manipulation moves,
which may change the origins and indices of objects, we use a special internal representation
of worlds. If we stored a mapping from the string “G(o1, . . . , on)” to traces in the world,
then whenever an object ok = T (origin, j) had its origin or index change, we would need to
update the entry G(o1, . . . , T (origin, j), . . . , on) for every property of this object. Instead,
we assign each object a unique identifier by storing a lookup table from identifier ik to
object ok = T (origin, j) with each world state. We then store traces in a dictionary from
keys G(i1, . . . , in), where each ik is an identifier. Index and origin changes can thus be
implemented in O(1) by updating entries in the lookup table, rather than O(n) in the
number of properties of the updated object.

6. The log terms come from the need to sort variables to update in the priority queue. Future work on
static analysis of inference programs may be able to perform this sorting at compile-time in some cases.
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Appendix E. Involutive MCMC with Ancestral Regeneration.

A key benefit of involutive MCMC is that it makes it feasible to rapidly prototype in-
ference kernels, because the acceptance-probability calculations are automated. A useful
development pattern is to begin with a kernel which uses generic inference techniques, like
ancestral regeneration, for proposal values for most variables, and then iterate on this ker-
nel by adding more data-driven proposals for variables for which the generic kernels are
ineffective.

To facilitate this, in the involution programming language presented in Section C, we
add a command regenerate P (o1, . . . , on) to resample property P of (o1, . . . , on) from the
prior distribution

pP (o1,...,on)(·|xPax(P (o1,...,on))) (7)

where Pax(u) denotes the parents of variable u in the contingent Bayesian network for the
open universe model the kernel operates on (with density p), in world x.

To support this command, we must modify our formulation of automated involutive
MCMC. The reason for this is that in involutive MCMC, all randomness in an inference
kernel must come from the proposal y ∼ qx; f must be a deterministic function. Therefore,
we must understand the execution of regenerate lines in the involution program as in fact
being part of the qx proposal which produces auxiliary randomness y.

The ancestral sampling distribution. Given a partial world P containing values for
some of the variables over which a contingent Bayesian network is defined, we define the
ancestral sampling distribution rP over the space W of MSSIs, which completes P into a
full MSSI w. If w and P disagree on any variable v (so w[v] 6= P [v]), then rP (w) = 0, and
if they agree on all variables,

rP (w) =
∏

v∈vars(w)\vars(P )

pv(w[v]|wPaw(v)). (8)

An extended proposal and involution for ancestral regeneration. Say we have an
involutive MCMC kernel defined by a partial proposal distribution q̃x and an “involution”
including regeneration commands f̃ . To explain this as involutive MCMC, we now define a
distribution qx using q̃x which includes the randomness from regeneration. We will describe
qx as producing tuples (ỹ, w), where ỹ ∼ q̃x, and w is sampled from the ancestral resampling
distribution r. Define the function f̃1 by f̃(x, y) = (f̃1(x, y), ·). We require f̃ to be such that
f̃(x, y) = x̃′, where x̃′ is a partial world. (This comes from the user-written “involution”
f̃ applying changes to world x, based on y, to produce a partial world, in which other
variables may then be ancestrally sampled to produce a complete world.) We can then say
w ∼ rf̃1(x,ỹ). We define:

qx((ỹ, w)) = q̃x(ỹ)× rf̃1(x,ỹ)(w) (9)

We now define an involution f(x, (ỹ, w)) = (x′, (ỹ′, w′)). For this, we require that f̃ has
the property that if f̃(x, y) = (x̃′, ỹ′), for any x̄′ ∈ W which agrees with x̃′, f̃(x̄′, ỹ′) = (x̃, ỹ′)
for some x̃ agreeing with x. (This is an involution in the case where x̃, x̃′ ∈ W.) Given f̃ ,
we define

f(x, (ỹ, w)) = (w, (ỹ′, w′)) (10)
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where
(x̃′, ỹ′) = f̃(x, ỹ); w′xvars(x)\vars(f̃1(x̃′,ỹ′))

The acceptance ratio. Using the above distribution, for f̃ satisfying similar parti-
tioning properties as we require for involutions f in Theorem 1, the acceptance probability
α(x, (ỹ, w), x′, (ỹ′, w′)) is

p(x′)

p(x)
×
q̃x′(ỹ

′)× rf̃1(x′,ỹ′)(x)

q̃x(ỹ)× rf̃1(x,ỹ)(x
′)
× |det

∂f̃(x, ỹ)

∂(x, ỹ)
| (11)

where |det ∂f̃(x,ỹ)∂(x,ỹ) | is the determinant of the Jacobian of the transformation of continuous

values under f̃ at (x, ỹ).

E.1. Automating involutive MCMC with ancestral resampling.

In section C, we introduced a language for specifying involutions on open-universe models.
An involution in the language takes as arguments the current world state x and auxiliary
randomness ỹ ∼ q̃x, and produces a sequence M of object manipulation moves, and a set
U of tuples (v, u), where v is a variable to update the trace for, and u specifies the updated
value. It also produces the reversing randomness ỹ′ and the Jacobian correction term J .
A new state x′ is constructed by applying M to the current state x, then applying all the
specified updates from U . However, it is possible that the produced state x′ is not a valid
world model state, either because

1. x′ is not minimal, in which case variables in x′ are automatically deleted by our system
to ensure minimality; or

2. x′ is not self-supporting, in which case additional variables needed for it to be self
supporting are automatically generated from the prior by our system.

Automatic deletions impose no semantic difficulties; however, when adding variables auto-
matically, the above formulation of involutive MCMC with ancestral regeneration is needed
to correctly calculate acceptance ratios.

Accumulating the state ratio. To implement an MCMC kernel, after sampling
ỹ ∼ q̃x and calculating (M,U, ỹ′, J), we construct state x′ using a function update(x,M,U)
(Algorithm 3). To calculate the acceptance ratio, we can calculate q̃x′(ỹ) and q̃x(ỹ′) directly,

and we know J . Thus, what remains is to calculate p(x′)
p(x) ×

rf̃1(x′,ỹ′)
(x)

rf̃1(x,ỹ)
(x′) . When no values are

generated via ancestral resampling, this reduces to the term p(x′)
p(x) . Our implementation has

the update procedure return this term as well, as it can be calculated by accumulating values

while updating x to x′. We accumulate
p(x′[v]|x′

Pax′ (v)
)

p(x[v]|xPax(v))
every time the trace for variable v is

updated from tv to t′v,
1

p(x[v]|xPax(v))
for every variable v which is deleted, and p(x′[v]|x′Pax′ (v))

for every variable which is added. In the case where some values are produced via ancestral

sampling rather than the external proposal, we must account for the
rf̃1(x′,ỹ′)

(x)

rf̃1(x,ỹ)
(x′) term. By

equation 8, the denominator of this is the product of terms pv(x
′[v]|x′Pax′ (v)) for variables
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v which are ancestral sampled in this move from x to x′. This is straightforward for the
update procedure to accumulate as it generates each of these values. The numerator of
this fraction is the product of pv(x[v]|xPax(v)) terms for each variable v which is ancestral-
sampled in the reverse move. To properly account for this, then, the update procedure
needs to know which properties will be ancestral-sampled in the reversing move. We can

thus define this procedure’s signature as (x′,
rf̃(x′,ỹ′)(x)

rf̃(x,ỹ)(x
′) ) = update(x,M,U,R) where R is

the set of variables which will be regenerated in the reversing move.
Involution language extension. To provide access to R, we extend the language from

section C, adding the syntax backward[P (o1, . . . , on)] = regenerated to specify that the
reverse-direction proposal ancestral samples a value for P (o1, . . . , on). One can also write
backward[properties of (o1, . . . , on)] = regenerated to specify that all properties for
any object tuple including o are regenerated by the reverse move. We also add a command
regenerate P of o, to specify that the value for P (o) should be ancestral-sampled to
produce x′, rather than copying the value for this property currently in x. (Copying from x
is the default behavior when P (o1, . . . , on) is present in x; ancestral sampling is the default
behavior when it is not present in x.)

One way to think about the need to specify the values ancestrally sampled in the reverse
move is as follows. Although users do not specify a dictionary key for values in the full
auxiliary randomness y which are generated by ancestral resampling, to ensure that the
full f is a valid involution, f must still write the values of these variables to y′ in the
reversing move. Because users don’t specify a dictionary key, we provide a special syntax,
set backward[P (o1, . . . , on)] = regenerated to automatically set the regenerated value
in y′ of variable P (o1, . . . , on) to equal this variable’s current value in x.

While the need to specify when a reverse move uses ancestral sampling adds a small
cognitive burden to the user of our inference programming language, we provide dynamic
error checks to ensure it is not a source of incorrectness. If users forget to include the
proper backward[. . . ] = regenerated statements, we can dynamically detect this error
by running the reverse move and seeing which values are actually regenerated. It is thus
simple to report when users have forgotten to include these commands, making it a fairly
painless debugging procedure to add the proper reverse-regenerate specifications.
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