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I have seen three proofs of Stirling’s approximation:
e the one I will outline here which idea I found in Hamming’s book

e a proof based on applying the Laplace approximation to the gamma func-
tion

e probabilistic proofs relying on moment-generating/characteristic functions.

I believe the first proof is the most elementary in the sense that it requires
nothing more than a first course in analysis. The idea of the proof is also very
straightforward: use the trapezoidal method to approximate fln log xdx and
bound the error. This said, this proof relies on two somewhat obscure facts:
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whenever |z| < 1.

Proof. The proof is straightforward: expand log(1 + z) and log(1l — z) around
x =0 for |z| < 1 and subtract. O

Lemma 2 (Wallis’ Inequality).

nw < <(22;)> <m(n+ %)

Proof. The inequality follows from the closed form of the integral
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Clearly, Iy = 7/2 and I; = 1. Using integration by parts we can find a recur-
rence:
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whence we get
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Using telescoping products we can find
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Now, for any 0 < 2 < 1 the sequence {sin” 2} is decreasing in n, so the sequence
{I,,} must also be decreasing. Since I,, # 0 we can write
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Using (1) we can see

2
4n 4 22n 4dn + 2
— < — | = < .
T ﬂ-2 (2n) — T

n
Multiplying across by 72 /4 finishes the proof. O

As mentioned, for the proof of Stirling’s formula we approximately integrate
log x using the trapezoidal method:
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where E,, is the approximation error. Noting that

/ log zdx = nlogn — n,
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we arrive at
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Hence, it remains to find the convergence behavior of E,,. We have
n—1

n—1 .i+1 . .
) ) i+1 o1 t+1
E, = E /z logz —logi — (z —i)log ——dz = g [—1+(z+2)10g
i=1

) 4 )
=1

We can now use lemma 1 on the summand, by using the change of variables
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Expanding the last term in terms of ¢ and simplifying we get
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At the same time, since the logarithmic function is concave, each term in the
sum defining E,, is positive', and so E,, is monotonically increasing. Hence, E,,
must be convergent to a value ' € R. Applying this to (2) we can see that
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To finish the proof we need to show that e=# = /2. This is where we use
Wallis’ inequality. First, note that we can rearrange (2) to get
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Substituting for n! in Wallis’ inequality we get
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Dividing through by n and taking limits we can see that
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Hence e ¥ = /27 and we arrive at
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it is the area between a secant line and a positive concave function



