Stirling's Approximation

Matin Ghavamizadeh

September 2021

I have seen three proofs of Stirling's approximation:

- the one I will outline here which idea I found in Hamming's book
- a proof based on applying the Laplace approximation to the gamma function
- probabilistic proofs relying on moment-generating/characteristic functions.

I believe the first proof is the most elementary in the sense that it requires nothing more than a first course in analysis. The idea of the proof is also very straightforward: use the trapezoidal method to approximate $\int_{1}^{n} \log x d x$ and bound the error. This said, this proof relies on two somewhat obscure facts:

Lemma 1.

$$
\log \frac{1+x}{1-x}=2 \sum_{n=0}^{\infty} \frac{x^{2 n+1}}{2 n+1}
$$

whenever $|x|<1$.
Proof. The proof is straightforward: expand $\log (1+x)$ and $\log (1-x)$ around $x=0$ for $|x|<1$ and subtract.
Lemma 2 (Wallis' Inequality).

$$
n \pi \leq\left(\frac{2^{2 n}}{\binom{2 n}{n}}\right)^{2} \leq \pi\left(n+\frac{1}{2}\right)
$$

Proof. The inequality follows from the closed form of the integral

$$
I_{n}=\int_{0}^{\pi / 2} \sin ^{n} x d x
$$

Clearly, $I_{0}=\pi / 2$ and $I_{1}=1$. Using integration by parts we can find a recurrence:
$I_{n}=\int_{0}^{\pi / 2} \underbrace{\sin ^{n-1} x}_{u} \underbrace{\sin x d x}_{d v}=\left[-\cos x \sin ^{n-1} x\right]_{0}^{\pi / 2}+(n-1) \int_{0}^{\pi / 2} \cos ^{2} x \sin ^{n-2} x d x$
whence we get

$$
I_{n}=(n-1) I_{n-2}-(n-1) I_{n}
$$

i.e.

$$
I_{n}=\frac{n-1}{n} I_{n-2} .
$$

Using telescoping products we can find

$$
\begin{equation*}
I_{2 n}=\frac{\pi}{2} \cdot \frac{\binom{2 n}{n}}{2^{2 n}} \quad I_{2 n+1}=\frac{1}{2 n+1} \cdot \frac{2^{2 n}}{\binom{2 n}{n}} \tag{1}
\end{equation*}
$$

Now, for any $0 \leq x \leq 1$ the sequence $\left\{\sin ^{n} x\right\}$ is decreasing in n, so the sequence $\left\{I_{n}\right\}$ must also be decreasing. Since $I_{n} \neq 0$ we can write

$$
\frac{1}{I_{2 n-1}} \leq \frac{1}{I_{2 n}} \leq \frac{1}{I_{2 n+1}} \Longrightarrow \frac{1}{I_{2 n-1} I_{2 n}} \leq \frac{1}{I_{2 n}^{2}} \leq \frac{1}{I_{2 n+1} I_{2 n}}
$$

Using (1) we can see

$$
\frac{4 n}{\pi} \leq \frac{4}{\pi^{2}}\left(\frac{2^{2 n}}{\binom{2 n}{n}}\right)^{2} \leq \frac{4 n+2}{\pi}
$$

Multiplying across by $\pi^{2} / 4$ finishes the proof.
As mentioned, for the proof of Stirling's formula we approximately integrate $\log x$ using the trapezoidal method:

$$
\int_{1}^{n} \log x d x=\sum_{i=1}^{n-1} \frac{\log (i)+\log (i+1)}{2}+E_{n}=\log n!-\frac{1}{2} \log n+E_{n}
$$

where E_{n} is the approximation error. Noting that

$$
\int_{1}^{n} \log x d x=n \log n-n
$$

we arrive at

$$
n \log n-n-\log n!+\frac{1}{2} \log n=E_{n}
$$

i.e.

$$
\begin{equation*}
\log \left(\frac{(n / e)^{n} \sqrt{n}}{n!}\right)=E_{n} \tag{2}
\end{equation*}
$$

Hence, it remains to find the convergence behavior of E_{n}. We have
$E_{n}=\sum_{i=1}^{n-1} \int_{i}^{i+1} \log x-\log i-(x-i) \log \frac{i+1}{i} d x=\sum_{i=1}^{n-1}\left[-1+\left(i+\frac{1}{2}\right) \log \frac{i+1}{i}\right]$
We can now use lemma 1 on the summand, by using the change of variables

$$
u_{i}=\frac{1}{2 i+1}
$$

to get

$$
\begin{aligned}
E_{n} & =\sum_{i=1}^{n-1}\left[-1+\frac{1}{2 u_{i}} \log \frac{1+u_{i}}{1-u_{i}}\right] \\
& =\sum_{i=1}^{n-1}\left[-1+1+\sum_{j=1}^{\infty} \frac{u_{i}^{2 j}}{2 j+1}\right] \\
& \leq \sum_{i=1}^{n-1} \sum_{j=1}^{\infty} u_{i}^{2 j}=\sum_{i=1}^{n-1} \frac{u_{i}^{2}}{1-u_{i}^{2}}
\end{aligned}
$$

Expanding the last term in terms of i and simplifying we get

$$
E_{n} \leq \frac{1}{4}\left(1-\frac{1}{n}\right)
$$

At the same time, since the logarithmic function is concave, each term in the sum defining E_{n} is positive ${ }^{1}$, and so E_{n} is monotonically increasing. Hence, E_{n} must be convergent to a value $E \in \mathbb{R}$. Applying this to (2) we can see that

$$
\lim _{n \rightarrow \infty} \frac{n!}{e^{-E}(n / e)^{n} \sqrt{n}}=1
$$

To finish the proof we need to show that $e^{-E}=\sqrt{2 \pi}$. This is where we use Wallis' inequality. First, note that we can rearrange (2) to get

$$
n!=e^{-E_{n}}(n / e)^{n} \sqrt{n}
$$

Substituting for n ! in Wallis' inequality we get

$$
n \pi \leq\left(\frac{2^{2 n} e^{-2 E_{n}}(n / e)^{2 n} n}{e^{-E_{2 n}}(2 n / e)^{2 n} \sqrt{2 n}}\right)^{2} \leq \pi\left(n+\frac{1}{2}\right)
$$

i.e.

$$
n \pi \leq \frac{n}{2}\left(\frac{e^{-2 E_{n}}}{e^{-E_{2 n}}}\right)^{2} \leq \pi\left(n+\frac{1}{2}\right)
$$

Dividing through by n and taking limits we can see that

$$
\pi \leq \frac{1}{2}\left(\frac{e^{-2 E}}{e^{-E}}\right)^{2} \leq \pi
$$

Hence $e^{-E}=\sqrt{2 \pi}$ and we arrive at

$$
\lim _{n \rightarrow \infty} \frac{n!}{\sqrt{2 \pi n}(n / e)^{n}}=1
$$

[^0]
[^0]: ${ }^{1}$ it is the area between a secant line and a positive concave function

