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I have seen three proofs of Stirling’s approximation:

• the one I will outline here which idea I found in Hamming’s book

• a proof based on applying the Laplace approximation to the gamma func-
tion

• probabilistic proofs relying on moment-generating/characteristic functions.

I believe the first proof is the most elementary in the sense that it requires
nothing more than a first course in analysis. The idea of the proof is also very
straightforward: use the trapezoidal method to approximate

∫ n
1

log xdx and
bound the error. This said, this proof relies on two somewhat obscure facts:

Lemma 1.

log
1 + x

1− x
= 2

∞∑
n=0

x2n+1

2n+ 1

whenever |x| < 1.

Proof. The proof is straightforward: expand log(1 + x) and log(1 − x) around
x = 0 for |x| < 1 and subtract.

Lemma 2 (Wallis’ Inequality).

nπ ≤

(
22n(
2n
n

))2

≤ π(n+
1

2
)

Proof. The inequality follows from the closed form of the integral

In =

∫ π/2

0

sinn xdx.

Clearly, I0 = π/2 and I1 = 1. Using integration by parts we can find a recur-
rence:

In =

∫ π/2

0

sinn−1 x︸ ︷︷ ︸
u

sinxdx︸ ︷︷ ︸
dv

=
[
− cosx sinn−1 x

]π/2
0

+(n−1)

∫ π/2

0

cos2 x sinn−2 xdx
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whence we get
In = (n− 1)In−2 − (n− 1)In;

i.e.

In =
n− 1

n
In−2.

Using telescoping products we can find

I2n =
π

2
·
(
2n
n

)
22n

I2n+1 =
1

2n+ 1
· 22n(

2n
n

) . (1)

Now, for any 0 ≤ x ≤ 1 the sequence {sinn x} is decreasing in n, so the sequence
{In} must also be decreasing. Since In 6= 0 we can write

1

I2n−1
≤ 1

I2n
≤ 1

I2n+1
=⇒ 1

I2n−1I2n
≤ 1

I22n
≤ 1

I2n+1I2n
.

Using (1) we can see

4n

π
≤ 4

π2

(
22n(
2n
n

))2

≤ 4n+ 2

π
.

Multiplying across by π2/4 finishes the proof.

As mentioned, for the proof of Stirling’s formula we approximately integrate
log x using the trapezoidal method:∫ n

1

log xdx =

n−1∑
i=1

log(i) + log(i+ 1)

2
+ En = log n!− 1

2
log n+ En

where En is the approximation error. Noting that∫ n

1

log xdx = n log n− n,

we arrive at

n log n− n− log n! +
1

2
log n = En;

i.e.

log

(
(n/e)n

√
n

n!

)
= En. (2)

Hence, it remains to find the convergence behavior of En. We have

En =

n−1∑
i=1

∫ i+1

i

log x− log i− (x− i) log
i+ 1

i
dx =

n−1∑
i=1

[
−1 + (i+

1

2
) log

i+ 1

i

]
We can now use lemma 1 on the summand, by using the change of variables

ui =
1

2i+ 1
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to get

En =

n−1∑
i=1

[
−1 +

1

2ui
log

1 + ui
1− ui

]

=

n−1∑
i=1

−1 + 1 +

∞∑
j=1

u2ji
2j + 1


≤
n−1∑
i=1

∞∑
j=1

u2ji =

n−1∑
i=1

u2i
1− u2i

.

Expanding the last term in terms of i and simplifying we get

En ≤
1

4
(1− 1

n
).

At the same time, since the logarithmic function is concave, each term in the
sum defining En is positive1, and so En is monotonically increasing. Hence, En
must be convergent to a value E ∈ R. Applying this to (2) we can see that

lim
n→∞

n!

e−E(n/e)n
√
n

= 1.

To finish the proof we need to show that e−E =
√

2π. This is where we use
Wallis’ inequality. First, note that we can rearrange (2) to get

n! = e−En(n/e)n
√
n.

Substituting for n! in Wallis’ inequality we get

nπ ≤
(

22ne−2En(n/e)2nn

e−E2n(2n/e)2n
√

2n

)2

≤ π(n+
1

2
);

i.e.

nπ ≤ n

2

(
e−2En

e−E2n

)2

≤ π(n+
1

2
).

Dividing through by n and taking limits we can see that

π ≤ 1

2

(
e−2E

e−E

)2

≤ π.

Hence e−E =
√

2π and we arrive at

lim
n→∞

n!√
2πn(n/e)n

= 1.

1it is the area between a secant line and a positive concave function
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