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Problem

As a widely used social media and news service, Twitter is
a valuable source of data for understanding social trends.
However, the enormous amount of data Twitter contains re-
quires an efficient method for discovering hidden semantic
structure and common themes among tweets. We create a
topic model using a dynamic, word-embedded non-negative
matrix factorization (Semantic NMF), and apply this model
to a dataset of Los Angeles tweets. We analyze the spa-
tiotemporal patterns of topics and explore the task of loca-
tion inference.
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Sorry losers and haters, but my 1.Q. is one of the highest -and
you all know it! Please don't feel so stupid or insecure,it's not
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Example Tweet

Definitions

X € R™"" is the term-document matrix containing
occurrences of the n unique terms in the m documents.

- W € R™ is the latent term-topic matrix, describing
which words define the k latent topics.

- H € R"™"™ is the topic-document matrix showing
topic assignment for each document.

= The goal of NMF is to find the solution of
arg min | X —WH|% st. W >0H >0,
W,H

thus splitting the body of text into k latent topics.

Word embeddings

Word embeddings capture the semantic meaning of words.
The NMF is modified to compute distance in the word em-
bedding space as

arg min [|[V(X —WH)||5 st. W >0,H >0.
W.H

V' can come from any word embedding model. We use

word2vec trained on a Google News dataset.!

= The objective function can be minimized using a modified
Hierarchical Alternating Least Squares algorithm.

= Initializing W with standard NMF improves convergence.

Comparing the results with standard NMF it can be seen
that

« topics are more diverse and
= topic assignment vectors are more sparse.

A more thorough evaluation will follow.
! https://code.google.com /archive /p /word2vec/

Dynamic Topic Modeling

We use a sliding time window and run NMF on each
epoch t. In order to achieve consistency of topics we add a
temporal regularization of W similar to [3] as
arg minl| X' — W H [+ X|W! — W2
Wt H!
s.t. W'>0,H">0,

where W'~! denotes the term-topic matrix from the previ-
ous epoch. This regularization ensures that topics do not
change drastically from one time window to the next. To
solve this, we initialize W' = W'~ and H' = [H'"' H]
where H = (WH)*X". Using these initial guesses, the min-
imization problem requires fewer iterations to converge and
the computation remains feasible.

Figure: Example Topic from June 17th, 2018
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Figure: Word embeddings figure
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Current Events

The aim is the identification of topics that are related to a
specific event occurring at a specific place in Los Angeles
based on the geolocation information of the tweets. For
this we use the spatial and temporal Fractional LP-norm

defined as . t
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where f7 is the pdf of the spatial distribution and f]t the
the pdf of the temporal distribution of tweets belonging
to topic j. Note that for any function f, || f||; denotes the
“mass" of the function and as p — 0", || f||, becomes the
volume of the support of f. Thus a small Fractional LP-
norm indicates a topic which has large mass focused in a
small region. We use this measure to decide which topics
are very specially localized in either space or time.
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Table: Spatial and temporal L P norms for two topics.

223.80 599.73

Location Inference

Only part of the tweets are label with geolocation informa-
tion. One can assign such a tweet to the location of the clos-
est matching tweet. To compute similarity between tweets
we examined using the cosine similarity of the

1 word vectors, i.e. the columns of X, and
> topic assignment vectors, i.e. the columns of H.

Not all tweets/topics are related to a certain location which
makes inference difficult. Fractional LP-norm can be used
to express the uncertainty of the inference.
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Figure: Comparing the accuracy of location inference for low and high
L P, tweets
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