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Problem

As a widely used social media and news service, Twitter is
a valuable source of data for understanding social trends.
However, the enormous amount of data Twitter contains re-
quires an efficient method for discovering hidden semantic
structure and common themes among tweets. We create a
topic model using a dynamic, word-embedded non-negative
matrix factorization (Semantic NMF), and apply this model
to a dataset of Los Angeles tweets. We analyze the spa-
tiotemporal patterns of topics and explore the task of loca-
tion inference.

Example Tweet

Definitions

• X ∈ Rn×m is the term-document matrix containing
occurrences of the n unique terms in the m documents.

• W ∈ Rn×k is the latent term-topic matrix, describing
which words define the k latent topics.

• H ∈ Rk×m is the topic-document matrix showing
topic assignment for each document.

• The goal of NMF is to find the solution of
arg min
W,H

‖X −WH‖2
F s.t. W ≥ 0, H ≥ 0,

thus splitting the body of text into k latent topics.

Word embeddings

Word embeddings capture the semantic meaning of words.
The NMF is modified to compute distance in the word em-
bedding space as

arg min
W,H

‖V (X −WH)‖2
F s.t. W ≥ 0, H ≥ 0.

V can come from any word embedding model. We use
word2vec trained on a Google News dataset.1

• The objective function can be minimized using a modified
Hierarchical Alternating Least Squares algorithm.

• Initializing W with standard NMF improves convergence.
Comparing the results with standard NMF it can be seen
that
• topics are more diverse and
• topic assignment vectors are more sparse.
A more thorough evaluation will follow.

1 https://code.google.com/archive/p/word2vec/

Dynamic Topic Modeling

We use a sliding time window and run NMF on each
epoch t. In order to achieve consistency of topics we add a
temporal regularization of W similar to [3] as

arg min
W t,H t

‖X t −W tH t‖2
F + λ‖W t −W t−1‖2

F

s.t. W t ≥ 0, H t ≥ 0,
where W t−1 denotes the term-topic matrix from the previ-
ous epoch. This regularization ensures that topics do not
change drastically from one time window to the next. To
solve this, we initialize W t = W t−1 and H t = [H t−1 Ĥ ]
where Ĥ = (W t)+X t. Using these initial guesses, the min-
imization problem requires fewer iterations to converge and
the computation remains feasible.

Figure: Example Topic from June 17th, 2018
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(a) Without regularization
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(b) With regularization
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Figure: Word embeddings figure

Current Events

The aim is the identification of topics that are related to a
specific event occurring at a specific place in Los Angeles
based on the geolocation information of the tweets. For
this we use the spatial and temporal Fractional LP-norm
defined as

LPs =
‖f sj ‖p
‖f sj ‖1

, LPt =
‖f tj‖p
‖f tj‖1

where f sj is the pdf of the spatial distribution and f tj the
the pdf of the temporal distribution of tweets belonging
to topic j. Note that for any function f , ‖f‖1 denotes the
“mass" of the function and as p → 0+, ‖f‖p becomes the
volume of the support of f . Thus a small Fractional LP-
norm indicates a topic which has large mass focused in a
small region. We use this measure to decide which topics
are very specially localized in either space or time.

LPs LPt

74.16 517.67

223.80 599.73

Table: Spatial and temporal LP norms for two topics.

Location Inference

Only part of the tweets are label with geolocation informa-
tion. One can assign such a tweet to the location of the clos-
est matching tweet. To compute similarity between tweets
we examined using the cosine similarity of the
1 word vectors, i.e. the columns of X , and
2 topic assignment vectors, i.e. the columns of H.
Not all tweets/topics are related to a certain location which
makes inference difficult. Fractional LP-norm can be used
to express the uncertainty of the inference.

(a) Tweet Similarity

(b) Topic Assignment Similarity
Figure: Comparing the accuracy of location inference for low and high
LPs tweets
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