
Math 113: Notes

Matin Ghavamizadeh

Spring 2020

Contents

1 Group Theory 2
1.1 Binary Operations and Structures . . . . . . . . . . . . . . . . . 2

1.1.1 Properties of Binary Operations . . . . . . . . . . . . . . 2
1.1.2 Homomorphisms and Isomorphisms . . . . . . . . . . . . 3

1.2 Groups and Subgroups . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Group Homomorphisms and Isomorphisms . . . . . . . . . . . . . 5
1.4 Cosets and Lagrange’s Theorem . . . . . . . . . . . . . . . . . . . 6
1.5 Normal Subgroups and Quotient Groups . . . . . . . . . . . . . . 9
1.6 The Fundamental Homomorphism Theorem . . . . . . . . . . . . 10
1.7 Product Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Special Groups 12
2.1 Cyclic Groups and Zn . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Classification of Cyclic Groups . . . . . . . . . . . . . . . 13
2.1.2 Some Results in Elementary Number Theory . . . . . . . 16

2.2 Permutation Groups . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Dihedral Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Rings and Fields 18
3.1 Definitions and Examples . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Ring Homomorphisms, Ideals, and Quotient Rings . . . . . . . . 22
3.3 Wedderburn’s Little Theorem . . . . . . . . . . . . . . . . . . . . 26
3.4 Field of Fractions of an Integral Domain . . . . . . . . . . . . . . 26
3.5 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6 Ideals In Polynomial Rings . . . . . . . . . . . . . . . . . . . . . 28
3.7 Field Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.8 Applications to Elementary Number Theory . . . . . . . . . . . . 30
3.9 Polynomial Factorization over Z and Q . . . . . . . . . . . . . . . 30

3.9.1 An Alternate Proof of Euler’s Theorem . . . . . . . . . . 31
3.9.2 Solving ax = b in Z/nZ . . . . . . . . . . . . . . . . . . . 31

1



1 Group Theory

1.1 Binary Operations and Structures

Definition 1 (Binary Operation). A binary operation ◦, on a set S is a mapping
◦ : S × S → S. The element ◦(a, b) is usually denoted a ◦ b.

Definition 2 (Binary Structure). A binary structure (S, ◦) is a set equipped
with a binary relation ◦ on S.

1.1.1 Properties of Binary Operations

Definition 3 (Closure). Let (S, ◦) be a binary structure. T ⊆ S is said to be
closed under ◦ if

∀x, y ∈ T ;x ◦ y ∈ T.

Definition 4 (Commutativity). Let (S, ◦) be a binary structure. x, y ∈ S are
said to commute under ◦ if x ◦ y = y ◦x. If all pairs of elements commute under
◦ it is said to be a commutative operation.

Definition 5 (Associativity). Let (S, ◦) be a binary structure. The operation
◦ is said to be associative if

∀x, y, z ∈ S;x ◦ (y ◦ z) = (x ◦ y) ◦ z.

Definition 6 (Identity Element). Let (S, ◦) be a binary structure. The element
e ∈ S is said to be the identity element under ◦ if

∀x ∈ S; e ◦ x = x ◦ e = e.

Remark (Uniqueness of Identity). Identity elements are unique: suppose e and
e′ are both identity elements in (S, ◦), then e = e ◦ e′ = e′ by definition. So the
phrase, “the identity element of S”, makes sense.

Definition 7 (Inverses). Let (S, ◦) be a binary structure. The element x′ ∈ S
is said to be an inverse of element x ∈ S under ◦ if

x ◦ x′ = x′ ◦ c = e,

where e is an identity element of (S, ◦).

Remark (notation used for binary operations). It is customary to denote binary
structures as (S, ·) and write ab instead of a · b for a, b ∈ S. What operation ab
refers to depends on the structure a and b belong to. For commutative structures
it is customary to use + instead of · and write a+ b instead of ab.
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1.1.2 Homomorphisms and Isomorphisms

Definition 8 (Homomorphism). Let S and S′ be binary structures. The map-
ping ϕ : S → S′ is said to be a homomorphism if

∀x, y ∈ S;ϕ(xy) = ϕ(x)ϕ(y).

Definition 9 (Isomorphism). Let S and S be binary structures. The mapping
ϕ : S → S′ is said to be an isomorphism if it is a bijective homomorphism. The
structures S and S′ are said to be isomorphic.

Remark (Invariance of Identity under Isomorphisms). The isomorphic image
of the identity element is the identity element. Suppose e is the identity in S
and ϕ : S → S′ is an isomorphism then for any y ∈ S′, we can find x ∈ S so
that ϕ(x) = y since ϕ is surjective. Now,

ϕ(e)y = ϕ(e)ϕ(x) = ϕ(ex) = ϕ(x) = y,

and similarly yϕ(e) = y. So ϕ(e) must be the identity in S′.

Remark (Invariance of Inverses under Isomorphisms). Let S and S′ be binary
structures with identity elements e and e′ and ϕ : S → S′ be an isomorphism.
If x′ is an inverse of x in S then ϕ(x′) is an inverse of ϕ(x):

ϕ(x′)ϕ(x) = ϕ(x′x) = ϕ(e) = e′

and similarly ϕ(x)ϕ(x′) = e′.

Remark. The inverse map of an isomorphism ϕ : S → S′ is an isomorphism
from S′ to S. Note that clearly, ϕ−1 is bijective, so it is enough to show that
ϕ−1 is a homomorphism:

ϕ−1(y1y2) = ϕ−1(ϕ(x1)ϕ(x2)) = ϕ−1(ϕ(x1x2)) = x1 ◦ x2 = ϕ−1(y1) ◦ ϕ−1(y2).

1.2 Groups and Subgroups

Definition 10 (Group). A group is a binary structure (G, ·) where the following
properties hold:

Associativity · is associative on G; i.e. ∀x, y, z ∈ G;x(yz) = (xy)z.

Existence of Identity G has an identity element under ·; i.e. ∃e ∈ G;∀x ∈
G;xe = ex = x.

Existence of Inverse Each element in G has an inverse under ·; i.e. ∀x ∈
G;∃x−1 ∈ G;xx−1 = x−1x = e.

Definition 11 (Abelian Group). G is called an abelian group if (G, ·) is a group
and · is commutative.
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Remark (Cancellation Laws). Note that in a group

xy = xz =⇒ x−1(xy) = x−1(xz) =⇒ (x−1x)y = (x−1x)z =⇒ y = z,

which is known as the left cancellation law. Similarly,

yx = zx =⇒ y = z,

which is known as the right cancellation law. Note that the cancellation laws
rely on all properties of a group.

Remark (Uniqueness of Inverses). The cancellation laws imply that inverses
must be unique. Note that the uniqueness of the identity element is inherited
from binary structures.

Remark (Sided Inverses). The cancellation laws and uniqueness of inverses
imply that if xx∗ = e then x∗ must be the inverse of x. Similarly, if x∗x = e
then x∗ = x−1.

Remark (Inverse of Products). Note that if a, b ∈ G then

(ab)(b−1a−1) = aea−1 = e,

so by the above remarks (ab)−1 = b−1a−1.

Remark (Power Notation). For any g ∈ G we define g0 = e, and let g−1 be the
inverse of g. Also, we let g1 = g and gn = gn−1g for n > 1. For n < 0 we define

gn =
(
g−1

)−n
. This way we have gngm = gn+m = gngm, and (gn)m = gnm for

any two integers n and m.

Definition 12 (Subgroup). Let (G, ·) be a group and let S ⊆ G. S is said to
be subgroup of G, denoted by S ≤ G, if (S, ·) is a group.

Proposition 1 (Subgroup Criteria). A subset S ⊆ G is a subgroup of (G, ·) if
and only if the following hold:

1. S is closed under ·.

2. e ∈ S where e is the identity element of G.

3. S is closed under taking inverses, i.e. if x ∈ S then x−1 ∈ S.

Proof. First note that if the above properties hold (S, ·) will be a group since the
associativity of · is inherited from G, the first property ensures that · restricted
to S is a binary relation on S, and the second and third properties make S into
a group. Now consider any S ≤ G. Since (S, ·) is a group, · must be a binary
operation on S, and hence S must be closed under ·. Since S must contain an
identity element which by uniqueness of identity must be e. Similarly, every
element in S must have an inverse in S which by uniqueness of inverses must
be its inverse in G.

Remark. Note that the set of the subgroup of the group G is partially ordered
by the ≤ relation (a partial order is reflexive, anti-symmetric, and transitive).
There is one maximal element which is G, and one minimal element {e}. This
allows us to arrange the subgroups of any group in a Hasse diagram.
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1.3 Group Homomorphisms and Isomorphisms

Remark. Group isomorphisms inherit the properties of isomorphisms on binary
structures. In particular, the inverse map of an isomorphism is an isomorphism,
isomorphisms map the identity element to the identity element, and the inverse
of the image of an element is the image of its inverse. More interestingly, group
homomorphism satisfies the last two properties.

Proposition 2 (Invariance of Identity under Group Homomorphisms). Assume
G and G′ are groups with respective identity elements e and e′. For any homo-
morphism ϕ : G→ G′, we must have ϕ(e) = e′. .

Proof. We have

ϕ(e) = ϕ(ee) = ϕ(e)ϕ(e) =⇒ ϕ(e)ϕ(e)−1 = ϕ(e)ϕ(e)ϕ(e)−1 =⇒ e′ = ϕ(e).

Note that this proof uses every property of groups.

Proposition 3 (Invariance of Inverses under Group Homomorphisms). Assume
G and G′ are groups with respective identity elements e and e′. For any homo-
morphism ϕ : G→ G′, and any x ∈ G we must have ϕ(x−1) = ϕ(x)−1

Proof. Clearly
ϕ(x)ϕ(x−1) = ϕ(xx−1) = ϕ(e) = e′,

By proposition 2. Noting the cancellation laws and the uniqueness of inverses
we conclude ϕ(x−1) = ϕ(x)−1.

Proposition 4 (Group Homomorphisms Preserve Subgroup Structure). As-
sume G and G′ are groups and ϕ : G → G′ is a homomorphism. We have the
following:

1. H ≤ G =⇒ ϕ(H) ≤ G′

2. H ≤ G′ =⇒ ϕ−1(H) ≤ G

Proof. We apply proposition 1 in the proof of both parts.

1. Take any two elements y1, y2 ∈ ϕ(H) and note that for some x1, x2 ∈ H
we must have y1 = ϕ(x1) and y2 = ϕ(x2). We have

y1y2 = ϕ(x1)ϕ(x2) = ϕ(x1x2) ∈ ϕ(H),

so ϕ(H) is closed under the group operation. Note that since H ≤ G we
must have e ∈ H and since ϕ is an isomorphism we must have ϕ(e) = e′

so e′ = ϕ(e) ∈ ϕ(H). Finally, for any x ∈ H, we must have x−1 ∈ H
so by proposition 3 ϕ(x)−1 = ϕ(x−1) ∈ ϕ(H). Hence, ϕ(H) must be a
subgroup of G′ by proposition 1.
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2. Take any two elements x1, x2 ∈ ϕ−1(H) and note that ϕ(x1), ϕ(x2) ∈ H.
We have

ϕ(x1x2) = ϕ(x1)ϕ(x2) ∈ H

since H ≤ G′ so ϕ−1(H) is closed under the group operation. Note that
since H ≤ G′ we must have e′ ∈ H and since ϕ is an isomorphism we
must have ϕ(e) = e′ so e ∈ ϕ−1(H). Also, for any x ∈ ϕ−1(H) we have
ϕ(x) ∈ H and since H is a subgroup and ϕ is a group homomorphism
ϕ(x)−1 = ϕ(x−1) ∈ H. Since ϕ(x−1) ∈ H we must have x−1 ∈ ϕ−1(H),
so ϕ−1(H) is closed under taking inverses and by by proposition 1 must
be a subgroup of G.

Definition 13 (Kernel and Image). Using proposition 4 we can define two
subgroups associated with each group homomorphism ϕ : G→ G′:

1. The kernel of ϕ, denoted by kerϕ is the pre-image of the trivial subgroup
{e′} ≤ G′.

2. The image of ϕ, denoted by Imϕ or ϕ(G) is the image of G.

Proposition 5. A group homomorphism ϕ : G→ G′ is injective if and only if
it has a trivial kernel, i.e. kerϕ = {e}.

Proof. Clearly, if ϕ is injective it must have a trivial kernel since it maps e
to e′. Now supose the kernel is trivial and take any two x1, x2 ∈ G so that
ϕ(x1) = ϕ(x2). We have

ϕ(x1) = ϕ(x2) =⇒ ϕ(x1)ϕ(x2)−1 = ϕ(x2)ϕ(x2)−1 =⇒

since ϕ is a group homomorphism ϕ(x2)−1 = ϕ(x−12 ), and so

ϕ(x1x
−1
2 ) = e′ =⇒ x1x

−1
2 ∈ kerϕ,

but kerϕ = {e} so x1 = x2.

Definition 14 (Group Isomorphim). As is the case with binary structures, a
group isomorphism is a bijective group homomorphism. If ϕ : G → G′ is an
isomorphism we say G and G′ are isomorphic and write G ' G′.

1.4 Cosets and Lagrange’s Theorem

Remark. Given any group homomorphism ϕ : G → G′, the structure of the
per-image of any element in the image of ϕ has a peculiar form: given y ∈ ϕ(G),
and any y0 ∈ G such that ϕ(y0) = y

ϕ−1(y) = {y0h|h ∈ kerϕ} := y0 kerϕ.

This motivates us to define the concept of a coset.
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Definition 15 (Coset). Let G be a group, H ≤ G and a ∈ G. The set

aH := {ah|h ∈ H}

is said to be a left coset of H, and the set

Ha := {ha|h ∈ H}

is said to be a right coset of H.

Remark. Our motivating remarks can be summarized as: the image of the
cosets of the kernel of a group homomorphism are singletons.

Proposition 6. Cosets of any subgroup H ≤ G partition G. Moreover, the
equivalence relation “a and b belong to the same coset of H” is given by

a ∼L b ⇐⇒ a−1b ∈ H

if we are considering a left coset and

a ∼R b ⇐⇒ ab−1 ∈ H.

Proof. Take any g ∈ G and note that g = ge and e ∈ H since H is a group
so g ∈ gH. Hence, ∪{gH|g ∈ G} ⊇ G. Clearly, ∪{gH|g ∈ G} ⊆ G as well so
we must have ∪{gH|g ∈ G} = G. Same goes for right cosets. Now take two
elements g1, g2 ∈ G such that g1H ∩ g2H 6= ∅. Suppose x ∈ g1H ∩ g2H, so we
can find h1, h2 ∈ H so that x = g1h1 = g2h2. For any h ∈ H we have

g1h = eg1h = xx−1g1h = g2h2h
−1
1 g−11 g1h = g2h2h

−1
1 h ∈ g2H

so g1H ⊆ g2H. Similarly, we can show g2H ⊆ g1H and so g1H = g2H. Hence,
no two different left cosets of H intersect, and therefore the left cosets of H
partition G. Same goes for the right cosets.

Now suppose g1 ∼L g2 so

g−11 g2 ∈ H =⇒ g−11 g2 = h ∈ H =⇒ g2 = g1h =⇒ g2 ∈ g1H.

Also, clearly g1 ∈ g1H and so g1 and g2 belong to the same left coset. Conversely,
if g1 and g2 belong to the same left coset gH of H we have g1 = gh1 and g2 = gh2
for h1, h2 ∈ H. Now

g−11 g2 = h−11 g−1gh2 = h−11 h2 ∈ H.

Hence, g1 ∼L g2, and the second part of the theorem is proven for left cosets.
The reasoning for right cosets is very similar.

Proposition 7. Every two (right or left) cosets of H ≤ G have the same
cardinality. In particular, |aH| = |eH| = |H|.
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Proof. Given two cosets aH, bH ⊆ G consider the map ϕ : aH → bH defined
by ϕ(x) = ba−1x. First, note that ϕ is injective:

ϕ(x1) = ϕ(x2) =⇒ ba−1x1 = ba−1x2 =⇒ x1 = x2

where the last implication is a result of the cancellation laws. Also, given any
bh ∈ H we know that ah ∈ aH and

ϕ(ah) = ba−1ah = bh

so ϕ is surjective. Hence ϕ is a bijection between aH and bH, so aH and bH
must be of the same cardinality. The particular case follows immediately.

The above two observation allow us to prove a useful result:

Definition 16 (Order of a Group). Suppose (G, ·) is a group. If G has n
elements, G is said to be of order n, denoted by |G| = n. If G is infinite, the
group is said to be of infinite order.

Theorem 1 (Lagrange’s Theorem). If G is a group of finite order and H ≤ G,
then |H|||G| (the order of H divides the order of G).

Proof. Consider the set of all (left or right) cosets of H. By proposition ?? the
cosets partition G, and by proposition 7 each coset has the same cardinality as
H. Also, since G is finite H must be finite, and the number of cosets must be
finite. Say we have k cosets, then

|G| = k|H| =⇒ |H|||G|.

Definition 17 (Index of a Subgroup). Suppose G is a subgroup and H ≤ G.
The index of H in G denoted by [G : H] is the number of cosets of H in G.

Remark. If G is finite, by our discussion of cosets and Lagrange’s theorem
[G : H] = |G|/|H|.

Proposition 8. Suppose K ≤ H ≤ G and both [G : H] and [H : K] are finite

[G : K] = [G : H][H : K]

Proof. Let
A = {gH : g ∈ G} B = {hK : h ∈ H}.

By our assumption we know both A and B are finite. Consider gK for some
g ∈ G. We know that since K ≤ H, gK ⊆ gH. later
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1.5 Normal Subgroups and Quotient Groups

Definition 18 (Normal Subgroup). Let G be a group. H ≤ G is a normal
subgroup of G (denoted by H CG) if

∀g ∈ G; gH = Hg;

i.e. if H’s left and right cosets are the same.

Remark. Note that subgroups of an abelian group and subgroups of index two
are normal. Also, the kernel of any group homomorphism ϕ : G→ G′ is normal,
because for any k ∈ kerϕ we have k−1 ∈ kerϕ and

ϕ(xk−1) = ϕ(x) =⇒ e′ = ϕ(xkx−1) =⇒ xkx−1 = k′ ∈ kerϕ =⇒ xk = k′x

so x kerϕ ⊆ kerϕx. We can similarly see that kerϕx ⊆ x kerϕ.

Proposition 9. For a group G and a subgroup H ≤ G, the following are
equivalent

1. H CG.

2. ∀g ∈ G;∀h ∈ H; g−1hg ∈ H.

3. ∀g ∈ G; g−1Hg = H.

Proof. (1 =⇒ 2) Given g ∈ G and h ∈ H we know that g−1h ∈ g−1H, but
since H CG, we have g−1H = Hg−1 so we can find h′ ∈ H such that

g−1h = h′g−1 =⇒ g−1hg = h′ =⇒ g−1hg ∈ H.

(2 =⇒ 3) Our assumption immediately implies g−1Hg ⊆ H. Now fix g ∈ G
and take any h ∈ H. By our assumption, since g−1 ∈ G we must have
ghg−1 ∈ H. Now consider

g−1(ghg−1)g = ehe = h

so h ∈ g−1Hg, and therefore H ⊆ g−1Hg.

(3 =⇒ 1) Immediately follows by taking gh ∈ gH (or hg ∈ Hg)and noting
that gHg−1 ∈ H.

Remark. Give g ∈ G the automorphism ig : G→ G given by ig(x) = gxg−1 is
known as a conjugation and gxg−1 is known as the conjugation of x by g.
The above proposition can be stated as: A subgroup is normal if and only if it
is fixed by every conjugation.

Remark. Any automorphism that is equal to a conjugation is called an inner
automorphism.
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G ϕ(G)

G/ kerϕ

ϕ

γ µ

Figure 1: The Fundamental Homomorphism Theorem
.

Remark. It is easy to see that any inner automorphism on an abelian group is
the identity map

ψ(x) = gxg−1 = gg−1x = x.

Proposition 10. Suppose G is a group and HCG. If aH = a′H and bH = b′H,
then abH = a′b′H.

Proof. Take abh ∈ abH since bh ∈ bH = b′H we can find h′1 ∈ H so that
bh = b′h′1 so abh = ab′h′1. Since H is normal b′H = Hb′ and we can find h′2 ∈ H
so that b′h′1 = h′2b

′, and therefore abh = ah′2b
′. Using the same reasoning we

can find h′′1 ∈ H so that ah′2 = h′′1a
′ so abh = h′′1a

′b′, and then find h′′2 ∈ H so
that h′′1a

′b′ = a′b′h′′2 . This allows us to conclude abH ⊆ a′b′H. Since cosets are
equivalence classes we must have abH = a′b′H.

Remark. The above proposition suggests that “coset multiplication” given by

(aH)(bH) = (ab)H

is well defined. Also, given any coset aH is is easy to see that (aH)(eH) = aH,
and (aH)(a−1H) = (a−1H)(aH) = eH. Hence, we arrive at the following:

Definition 19 (Quotient Group). Suppose G is a group and H C G. The
quotient group G/H (pronounced G modulo H) is the group on the cosets of
H under coset multiplication.

1.6 The Fundamental Homomorphism Theorem

Theorem 2 (The Fundamental Homomorphism Theorem). The image of G
under any homomorphism is isomorphic to a quotient of G, and any quotient
of G is isomorphic to the image of G under a homomorphism.

Proof. We first prove that any quotient of G is isomorphic to the image of G un-
der a homomorphism. Take NCG and consider the “canonical homomorphism”
γ : G→ G/N defined by γ(x) = xN . Clearly, γ is surjective. Also

γ(xy) = (xy)N = (xN)(yN) = γ(x)γ(y).

So we can see that G/N = γ(G).
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Now we show that the image of G under any homomorphism is isomorphic
to a quotient of G. Suppose ϕ : G → G′ is a group homomorphism. We know
that kerϕ is a normal subgroup of G so we can consider the quotient G/ kerϕ.
Let γ : G→ G/ kerϕ be given by γ(x) = x kerϕ. Note that if x kerϕ = y kerϕ
then for k1, k2 ∈ kerϕ we have

xk1 = yk2 =⇒ ϕ(xk1) = ϕ(yk2) =⇒ ϕ(x) = ϕ(y).

Hence, we can define the map µ : G/ kerϕ→ ϕ(G) by µ(x kerϕ) = ϕ(x). First,
note that for any ϕ(x) ∈ ϕ(G), we can consider x kerϕ ∈ G/ kerϕ to see that
µ(x kerϕ) = ϕ(x). Also, if µ(x kerϕ) = µ(y kerϕ) we must have ϕ(x) = ϕ(y)
which implies xy−1 ∈ kerϕ so x ∈ y kerϕ and since cosets are equivalence classes
x kerϕ = y kerϕ. Hence, µ is a bijection. Finally, note that

µ((x kerϕ)(y kerϕ)) = µ((xy kerϕ)) = ϕ(xy) = ϕ(x)ϕ(y) = µ(x kerϕ)µ(y kerϕ).

Hence, µ is an isomorphism, and therefore ϕ(G) is isomorphic to G/ kerϕ.
Figure 1 summarizes this construction.

1.7 Product Groups

Theorem 3 (Product Group). If (G1, ◦1) and (G2, ◦2) are groups we can define
the product group (G1 ×G2, ◦) with the following operation:

(x1, x2) ◦ (y1, y2) = (x1 ◦1 y1, x2 ◦2 y2).

Proof. Associativity is a consequence of associativity of G1 and G2:

(x1, x2) ◦ ((y1, y2) ◦ (z1, z2)) = (x1, x2) ◦ (y1 ◦1 z1, y2 ◦2 z2)

= (x1 ◦1 (y1 ◦1 z1), x2 ◦2 (y2 ◦2 z2))

= ((x1 ◦1 y1) ◦1 z1, (x2 ◦2 y2) ◦2 z2)

= ((x1 ◦1 y1), (x2 ◦2 y2)) ◦ (z1, z2)

= ((x1, x2) ◦ (y1, y2)) ◦ (z1, z2).

The identity element is (e1, e2) where ei is the identity in Gi:

(x1, x2) ◦ (e1, e2) = (x1 ◦1 e1, x2 ◦2 e2) = (x1, x2)

= (e1 ◦1 x1, e2 ◦2 x2) = (e1, e2) ◦ (x1, x2).

The inverse of (x1, x2) is given by (x−11 , x−12 ):

(x1, x2) ◦ (x−11 , x−12 ) = ((x1 ◦1 x−11 ), (x2 ◦2 x−12 )) = (e1, e2),

and
(x−11 , x−12 ) ◦ (x1, x2) = ((x−11 ◦1 x1), (x−12 ◦2 x2)) = (e1, e2).

Remark. Any group of order 2 is isomorphic to Z2, and any group of order 3
is isomorphic to Z3. This is not the case for groups of order 4, Z4 and Z2 × Z2

are not isomorphic.
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2 Special Groups

2.1 Cyclic Groups and Zn

Proposition 11. If {Hα|α ∈ I} is a family of subgroups of G, then H =
∩α∈IHα ≤ G.

Proof. Take x, y ∈ H. For every α ∈ I we have x, y ∈ Hα, and since each Hα is
a subgroup we must have xy ∈ Hα. Hence, xy ∈ ∩α∈IHα = H, and we conclude
that H is closed under the group operation. Similarly, for any x ∈ H we must
have x ∈ Hα for all α ∈ I, and since Hα is a group, x−1 ∈ Hα. This allows us
to conclude that H is closed under taking inverses. Finally, since each Hα is a
subgroup, we must have

∀α ∈ I; e ∈ Hα =⇒ e ∈ ∩α∈IHα.

Therefore, H ≤ G.

Definition 20 (Generator and Generated Subgroup). Let G be a group and
let S ⊆ G. The subgroup generated by S in G is defined as

〈S〉 =
⋂
{H ≤ G|H ⊇ S}.

Each element of S is said to be a generator of 〈S〉. It is customary to write
〈a1, . . . , an〉 instead of 〈{a1, . . . , an}〉 when S = {a1, . . . , an}.

Proposition 12 (Identification of Finitely Generated Groups). Let G be a
group and S = {a1, . . . , an} be a subset of G. We have

〈S〉 = {x1x2 . . . xk|k ∈ Z+, xi ∈ {a1, . . . , an, a−11 , . . . , a−1n }} (1)

Proof. Let H be the set on the RHS of (1). Take any x, y ∈ H where x =
x1 . . . xn and y = y1 . . . ym. Note that clearly xy = x1 . . . xny1 . . . ym ∈ H, and
x−1 = x−1n . . . x−11 ∈ H. Also, e = a1a

−1
1 ∈ H so H ≤ G. Clearly S ⊆ H so by

definition of 〈S〉 we must have 〈S〉 ⊆ H. Also, since we must have S ⊆ 〈S〉 and
〈S〉 must be closed under multiplication, we must have H ⊆ 〈S〉, and therefore
H = 〈S〉.

Definition 21 (Cyclic Group). A group G is said to be cyclic if it has a single
generator; i.e.

∃g ∈ G; 〈g〉 = G.

Proposition 13.
〈g〉 = {gn|n ∈ Z}.
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Proof. Let G = {gn|n ∈ Z}. Clearly, G ⊆ 〈g〉. Note that gngm = gn+m ∈ G,
e = g0 ∈ G and for each gn ∈ G we have (gn)−1 = g−n ∈ G. Hence, G is a
group that contains g and we must have 〈g〉 ⊆ G.1

2.1.1 Classification of Cyclic Groups

Remark. Integers under addition form an abelian group.

Proposition 14. Given each integer n ∈ Z,

nZ = {nk|k ∈ Z}

is a subgroup of (Z,+).

Proof. nk1 + nk2 = n(k1 + k2), −nk = (−n)k, and 0 = n0.

Definition 22. Since Z is abelian, and every subgroup of an abelian group is
normal, the cosets of the subgroup nZ are well-defined for every n ∈ Z. The
abelian group Z/nZ for every positive n is known as the group of integers modulo
n and is denoted by Zn. It is customary to denote k + nZ ∈ Z/nZ by k alone,
when the context is clear.

Theorem 4 (Division Theorem). Given n ∈ Z and p ∈ Z+ there exist unique
q, p ∈ Z such that n = pq + r, and 0 ≤ r < p.

Proof. Consider the set A = {m ∈ Z|mp > n}. This set is non-empty, since if
n ≤ 0 we have 1 ∈ A, and if n > 0 we have n + 1 ∈ A. Similarly, we can show
that this set is bounded below. Hence, by the well-ordering principle it has a
smallest element q′ ∈ Z. Note that q′ being the smallest element of A implies
q′ − 1 6∈ A, and so (q′ − 1)p ≤ n. To summarize, we have (q′ − 1)p ≤ n < q′p.
Letting q = q′ − 1 we see that

0 ≤ n− qp︸ ︷︷ ︸
r

< p.

So that the claim is satisfied. Now assume q2, r2 also satisfy the claim. We must
have

pq + r = pq2 + r2 =⇒ p(q − q2) = r2 − r =⇒ p|r2 − r.

Since both r and r2 are non-negative and less than p, their difference will satisfy
−p < r2 − r < p so the only way p|r2 − r holds is that r2 − r = 0. This implies
that q − q2 = 0.

Definition 23 (Order of an Element). Let G be a group. The order of a ∈ G
denoted by o(a) is taken to be the smallest non-negative integer p such that
ap = e. If no such p exists a is said to be of infinite order.

1This derivation only makes sense if g is taken to be the element of a parent group. If we
only have a single element g and the notion of a group operation, we can take this to be the
definition of the group generated by g.
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Proposition 15. Let G be a group and a ∈ G. If ap then o(a)|p.

Proof. First note that since e is its own inverse, by uniqueness of inverses we
must have a−p = e, hence the set {p ∈ Z+|ap = e} will be non-empty. Therefore,
by the well ordering theorem a is of finite order. Apply the division theorem to
p and o(a) to get p = qo(a) + r where 0 ≤ r < o(a). Note that

e = ap = aqo(a)+r = (ao(a))qar = ar

since o(a) is the smallest positive integral power that annihilates a we must have
r = 0. Hence p = qo(a), namely o(a)|p.

Proposition 16. Let G = 〈g〉 be of finite order. Then o(g) = |G|.

Proof. First note that G must have at least o(g) elements g, g2, . . . , go(a), since
if gi = gj for 1 ≤ i < j ≤ o(a) we must have gj−i = e so the order of g must be
less than j − i, contradiction. Also, for any p > o(a) we can apply the division
theorem to get p = qo(a) + r for 0 ≤ r < o(a), and we can see that gp = gr.
Hence, we must have G = {g, g2, . . . , go(a)} and therefore |G| = o(g).

Theorem 5 (Classification of Cyclic Groups). Every cyclic group of order n is
isomorphic to Z/nZ. Every cyclic group of infinite order is isomorphic to Z.

Proof. Let G = 〈g〉. We consider two cases:

1. If G = 〈g〉 is of order n, we can apply proposition 16 to see that o(g) = n
and therefore if k + nZ = k′ + nZ we must have

gk = gk
′+pn = gk

′
(gn)p = gk

′
.

Hence, we can define ϕ : Z/nZ → G by ϕ(k + nZ) = gk. By proposition
13, ϕ is surjective. Now assume

ϕ(k + nZ) = ϕ(k′ + nZ) =⇒ gk = gk
′

=⇒ gk−k
′

= e.

By proposition 15 we must have o(g)|k−k′ and by proposition 16, o(g) = n.
Hence, n|k − k′; i.e. k = np + k′ or equivalently k ∈ k′ + nZ. Hence, we
must have k + nZ = k′ + nZ, and, therefore, ϕ is injective. Finally, note
that

ϕ ((k + nZ) + (k′ + nZ)) = ϕ((k + k′) + nZ) = gk+k
′

= gkgk
′

= ϕ(k + nZ) + ϕ(k′ + nZ).

Hence, G ' Z/nZ.

2. If G is of infinite order we define ϕ : Z→ G by ϕ(k) = gk. By proposition
13, ϕ is surjective. Also,

ϕ(k) = ϕ(k′) =⇒ gk−k
′

= 0

14



if k− k′ 6= 0 the order of g and hence the order of G will be finite. Hence,
we must have k − k′ = 0. Finally, note that

ϕ(k + k′) = gk+k
′

= gkgk
′

= ϕ(k)ϕ(k′).

Therefore, G ' Z.

Corollary. Cyclic groups are countable.

Corollary. Cyclic groups are abelian.

Proposition 17. Subgroups of cyclic groups are cyclic.

Proof. Let G = 〈g〉 and H ≤ G. e ∈ H so |H| ≥ 1. If |H| = 1 we must
have H = {e} = 〈e〉. Otherwise, the set {k ∈ Z+|gk ∈ H} non-empty, and by
the well-ordering principle it must have a minimum element, p. We claim that
H = 〈gp〉. Note that by closure of H we must have H ⊇ 〈gp〉. Now for any
gn ∈ H we can apply the division theorem to n and p to get q = np + r, and
therefore gr = e. Since p is the smallest positive integral power that annihilates
g and 0 ≤ r < p we must have r = 0. So 〈gp〉 ⊆ H.

Proposition 18. Quotients of a cyclic group are cyclic.

Proof. Let G = 〈g〉 and H ≤ G. Since G is abelian H is normal. Consider
gH ∈ G/H. Note that grH = (gH)r so G/H ⊆ 〈gH〉. Also, 〈gH〉 ⊆ G/H.
Hence, G/H = 〈gH〉.

Definition 24 (Center). The center of a group G is given by

Z(G) = {z ∈ G|∀x ∈ G; zx = xz}.

Proposition 19. The center of a group is a normal subgroup.

Proof. Note that if z1, z2 ∈ G we have

xz1z2 = z1xz2 = z1z2x,

e ∈ Z(G), and
xz = zx =⇒ z−1z = xz−1.

Also, clearly the left and right cosets are equal, since the elements in Z(G)
commute with every element of G.

Proposition 20. If G/Z(G) cyclic then g abelian.

Proof. Let G/Z(G) = 〈gZ(G)〉 for some g ∈ G. Take x, y ∈ G, we have

(xZ(G)) = gpZ(G) =⇒ x = gpz1
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where p ∈ Z+ and z1 ∈ Z(G), and similarly

(yZ(G)) = gqZ(G) =⇒ x = gqz2.

Now

xy = gpz1g
qz2 = gpgqz1z2 = gqgpz1z2 = gqz1g

pz2

= gqz1z2g
p = gqz2z1g

p = gqz2g
pz1 = yx.

2.1.2 Some Results in Elementary Number Theory

Remark. The fact that groups of integers and cyclic groups are isomorphic
allows us to use group theory to derive some of the standard results in elementary
number theory.

Theorem 6 (Bezout’s Identity). Given two positive integers a and b their great-
est common divisor can be expressed as a linear combination; that is x, y ∈ Z
exist so that gcd(a, b) = ax+ by.

Proof. Consider 〈a, b〉 in Z. Note that clearly {ar + bs|r, s ∈ Z} ⊆ 〈a, b〉. Also,
{ar+bs|r, s ∈ Z} is a group containing a and b, hence 〈a, b〉 ⊆ {ar+bs|r, s ∈ Z}.

Since Z is cyclic, and every subgroup of a cyclic group is cyclic, 〈a, b〉 must
be cyclic. In particular, the smallest positive integer d ∈ Z+ must exist so that
〈a, b〉 = 〈d〉, and by our above remarks d = ax+ by

Clearly, d is a common divisor of a and b. If d′ is another common divisor
it must be a generator of 〈a, b〉. Since d is the smallest positive such generator
we must have d′ ≤ d. Hence, gcd(a, b) = d = ax+ by.

Corollary (Euclid’s Lemma). If gcd(a, b) = 1 and a|bc then a|c.

Proof. By Bezout’s identity x, y ∈ Z exist such that ax + by = 1. Now a|bc so
for some p ∈ Z we have ap = bc. So

ax+by = 1 =⇒ acx+bcy = c =⇒ acx+apy = c =⇒ a(cx+py) = c =⇒ a|c.

Proposition 21. Every group G of prime order is cyclic, and every element of
G other than the identity is a generator.

Proof. Let H ≤ G. By Lagrange’s theorem |H|||G|, and since G is of prime
order we must have |H| = 1 or |H| = |G|. So for any g 6= e we must have
|〈g〉| = |G|, i.e. g must generate G.

Theorem 7 (Fermat’s Little Theorem). If p is prime then for any a ∈ Z/pZ
we must have ap = a.

Proof. First note that 0 ∈ Z/pZ raised to any power is 0. Now consider 21 for
any a 6= 0, a + pZ must be a generator of Z/pZ. We know that the order of a
generator is the order of the group, so (a+ pZ)p = pZ
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2.2 Permutation Groups

Definition 25 (Permutation).

Theorem 8 (Cayley’s Theorem).

2.3 Dihedral Groups

Loosely speaking, The n-th dihedral group encodes the symmetries of a regular
n-gon (n ≥ 3) through reflections and rotations. Consider the set of points
in a plane comprising a regular n-gon. If we rotate this set of points by an
integer multiple of 2π/n around its center of gravity the transformed set will be
indistinguishable form the original one. Same is true if we reflect the set about
any of its diagonals. Finish these introductory remarks.

Consider the following maps:

Rotation by 2π/n r : Zn → Zn given by r(x) = x+ 1

Reflection about Vertex 0 s : Zn → Zn given by s(x) = −x

Since both r and s are permutations on Zn, we can consider the subgroup of Sn
they generate, and denote it by Dn. This subgroup is called the n-th dihedral
group. The following properties hold:

1. rn = e because rn(x) = x+ n = x (mod n).

2. s2 = e because s2(x) = −(−x) = x (mod n).

3. sr = r−1s because s(r(x)) = −(x+ 1) = s(x)− 1 = r−1(s(x)) (mod n)

Note that the last property implies that rs = sr−1. Now, by definition of Dn,
we must have ri ∈ Dn for 0 ≤ i < n. Also note that

ri = rj =⇒ ri(0) = rj(0) =⇒ i = j (mod n)

so the ris are unique for the specified is. We must also have sri ∈ Dn for
1 ≤ i ≤ n and since sri = srj implies ri = rj by the uniqueness of ris we must
have that sris are unique for the specified is. Finally note that

sri = rj =⇒ sri(0) = rj(0) =⇒ −i = j (mod n)

while at the same time

sri = rj =⇒ sri(1) = rj(1) =⇒ −i− 1 = 1 + j (mod n)

so we must have −1 = 1 (mod n) or equivalently 2 = 0 (mod n), which con-
tradicts our assumption that n ≥ 3. Hence, r0, . . . , rn−1, s, . . . , srn−1 are 2n
unique elements of Dn; i.e. {r0, . . . , rn−1, s, . . . , srn−1} ⊆ Dn.

We will now show that the inclusion also holds in the other direction. To
show this we rely on the following two lemmas:
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Lemma 1. For all k ∈ Z+, srk = r−ks.

Proof. We prove the lemma by induction. The base case of k = 1 is proved
above, so assume that the lemma holds for some k ≥ 1. We have srk+1 =
srrk = r−1srk and by the induction hypothesis srk = r−ks so we can conclude
srk+1 = r−1r−ks = r−k−1s.

Corollary. The above lemma also holds for all k ∈ Z since if k < 0 we have

sr−k = rks =⇒ r−k = srks =⇒ r−ks = srk

and if k = 0 we have the trivial statement s = s.

Lemma 2. Every element of Dn is of the form risj for some i, j ∈ Z.

Proof. Note that by definition of Dn and proposition 12 we have

Dn = {x1x2 . . . xk|k ∈ Z+, xi ∈ {r, s, r−1}}.

We prove the lemma by induction on k, the number of xis in the above repre-
sentation of Dn.

base case (k = 1) There are only three such elements in Dn: r, s, and r−1 all
of which have the claimed form.

inductive step Take any x1 . . . xk+1 ∈ Dn. We must have x2 . . . xk+1 ∈ Dn

and by the induction hypothesis we must have x2 . . . xk+1 = risj . Now, if
x1 is r or r−1 we are done. Otherwise we have x1 . . . xk+1 = srisj which
by the corollary to the first lemma can be written as r−isj+1.

Now, take any element x of Dn. By the second lemma we must have x = risj .
Noting that s2 = e, we consider two cases. Either j is even, in which case
sj = e and x = ri, or j is odd, in which case sj = s and so x = ris which
by the corollary to the first lemma can be written as sr−i. In either case we
can use the fact that rn = e and use division theorem to express x as rl or
srl for some 0 ≤ l < n. Hence, x must be one of r0, . . . , rn−1, s, . . . , srn−1; i.e.
{r0, . . . , rn−1, s, . . . , srn−1} ⊇ Dn. We can now conclude that

Dn = {r0, . . . , rn−1, s, . . . , srn−1}.

3 Rings and Fields

3.1 Definitions and Examples

We start with the usual definitions: the ring structure itself, structure preserving
mapping between rings (ring homomorphisms), and substructures (subrings).
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Definition 26 (Ring). A ring (R,+, ·) is a set R equipped with two binary
operations · : R×R→ R and + : R×R→ R. Such that

1. (R,+) is an abelian group.

2. · is associative.

3. · distributes over + from both left and right; i.e. for all x, y, z ∈ R

x(y + z) = xy + xz (y + z)x = yx+ zx.

Remark. A ring is said to be commutative if · is commutative.

Definition 27 (Ring With Unity). A ring R is said to have a unity element if
for some element 1 ∈ R and any x ∈ R

1 · x = x · 1 = x.

Remark. There is no consensus in the mathematical community on whether a
ring should contain a unity. Some take the existence of unity as a defining ring
axiom and call a ring without unity a pseudo-ring or ‘rng’, while others allow
rings to lack a multiplicative identity element and then call a ring that have
unity a ‘ring with unity’ or ‘ring with identity’.

Definition 28 (Ring Homomorphsim and Isomorphism). Let R and R′ be rings.
A ring homomorphism is a mapping φ : R → R′ that satisfies the following for
any x, y ∈ R

φ(x+ y) = φ(x) + φ(y) φ(xy) = φ(x)φ(y).

If the homomorphism φ is bijective it is said to be an isomorphism and R and
R′ are said to be isomorphic, and we write R ' R′.

Definition 29 (Subrings). A non-empty subset S of a ring (R,+, ·) is said to
be a subring of R if (S,+, ·) is itself a ring.

Remark. As was the case with groups, multiplication and addition inherits
their properties in S. So in order for S to be ring it is enough that it is closed
under the ring operations and additive inverses.

Remark (Some examples).

1. Integers modulo n for any n ≥ 2 form a commutative ring with unity.

2. If R is a ring, then the set of all matrices on R under matrix multiplication
and addition is a ring.

3. If S is a set and R is a ring the set of all functions from S to R with the
usual function addition and multiplication is a ring.
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4. The familiar sets Q, R, C, and Z/pZ when p is prime are all commuta-
tive rings with unity. They also have the extra property of existence of
multiplicative inverses which makes them into such sets to be ideals.

5. Polynomials with coefficients in a ring (defined later) form a ring.

Before giving more definitions, we prove the following basic identities con-
cerning additive inverses and identity that hold in all rings.

Proposition 22. Let R be a ring with additive identity 0. The following hold

1. For any x ∈ R we have x0 = 0x = 0.

2. For any x, y ∈ R we have x(−y) = (−x)y = −(xy) and (−x)(−y) = xy.

Proof. 1. By left distributivity x0 = x(0 + 0) = x0 + x0 and by cancellation
in the additive group (R,+) we have 0 = x0. Similarly 0x = 0.

2. Since R is an abelian group under addition, additive inverses are unique.
Now

xy + x(−y) = x(y + (−y)) = x0 = 0,

and
xy + (−x)y = (x+ (−x))y = 0y = 0,

so x(−y) = (−x)y = −(xy). Using this we can write

−(xy) + (−x)(−y) = (−x)y + (−x)(−y) = (−x)(y + (−y)) = (−x)0 = 0.

3. For any x, y ∈ R we have x(−y) = (−x)y = −(xy) and (−x)(−y) = xy.

Definition 30 (Zero Divisors). A non-zero element x of a ring R is said to be a
left (right) zero-divisor in R if non-zero y ∈ R exists such that xy = 0 (yx = 0).

Definition 31 (Domain). A ring that has no zero divisors is said to be a
domain.

Definition 32 (Integral Domain). A commutative domain with identity is said
to be an integral domain.

Remark. Integers are canonical example and the namesake of integral domains.

Proposition 23. A ring R has no left (right) zero divisors if and only if mul-
tiplicative cancellation on the left (right) holds; i.e. for any non-zero x, and
y, z ∈ R, the equation xy = xz (yx = zx) implies y = z.

Proof. First suppose R has no right zero divisors and for some non-zero x, y, z ∈
R we have xy = xz. Using what we know about additive inverses in R we have

xy = xz =⇒ xy − (xz) = xy + x(−z) = 0 =⇒ x(y + (−z)) = 0.
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Since x is non-zero and R has no zero divisors we can conclude that y+(−z) = 0
or equivalently x = z.

Now suppose left cancellation holds and for some non-zero x and z ∈ R we
have xz = 0. We know that 0 = x0 and so we must have xz = x0. By left
cancellation we conclude z = 0 so R does not have any zero divisors.

The case of right divisors and cancellation is similar.

Remark. By the above proposition, integral domains are commutative rings
with identity over which cancellation holds.

Definition 33 (Units). An element x of a ring R with unity is said to be a unit
if it has a multiplicative inverse.

Remark. By proposition 22 the additive identity 0 can never be a unit.

Definition 34 (Division Ring). A ring with unity in which every non-zero
element is a unit is called a division ring or a skew-field.

Remark. Quaternions are the canonical example of a skew field.

Definition 35 (Field). A commutative division ring is a field; i.e. a commu-
tative ring with identity (F,+, ·) is said to be a field if every non-zero element
has a multiplicative inverse.

Remark. The familiar Q, R, C, and Z/pZ are all fields.

Remark. Observe that if 0 6 1 on a field, then F \{0} is an abelian group under
multiplication. This in turn implies that the multiplicative identity and inverses
are unique.

Definition 36 (Characteristic of a Ring). Given a ring R, if we can find a
positive integer n so that if any x ∈ R added n times with itself gives 0 -i.e.
n · x = 0-, then we call the smallest such n the characteristic of R. If no such n
exists, R is said to be of characteristic zero.

Proposition 24. If R has a multiplicative identity 1, then -if extant- the small-
est positive integer n for which n · 1 = 0 is the characteristic of R, and n · 1 6= 0
for all n ∈ Z+ if and only if R is of characteristic zero. That is, for unital rings
the definition of the characteristic can be done in terms of 1.

Proof. By definition if R is of characteristic n > 0 we must have n ·1 = 0. Also,
if m · 1 = 0 for some m < n we can multiply by x on both sides to see that m
must be the characteristic of R, and so n must be the smallest positive integer
that has this property. This also shows that the smallest n such that n · 1 = 0
must be the characteristic of R. Also, if for all n > 0 we have n · 1 6= 0 then
clearly the characteristic of R must be zero.

I end this section with a little nugget:
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Proposition 25 (Freshman’s Dream). If a commutative ring with identity R
has prime characteristic p, then for any x, y ∈ R we have

(x+ y)p = xp + yp.

Proof. First note that because of commutativity, the binomial theorem holds.
Sencod, note the identity (

p

k

)
=
p

k

(
p− 1

k − 1

)
which is easily verified by expressing binomial coefficients in terms of factorials.
Now, note that for 1 ≤ k < p, we have gcd(k, p) = 1, since p is prime, and since(
p
k

)
must be an integer we must have k|p

(
p−1
k−1
)
. By Euclid’s lemma we conclude

that k|
(
p−1
k−1
)

So
(
p
k

)
is a multiple of p for 1 ≤ k < p. Using this we have

(x+ y)p =

p∑
k=0

(
p

k

)
xkyp−k =

(
p

0

)
x0yp−0 +

(
p

p

)
xpyp−p = xp + yp.

3.2 Ring Homomorphisms, Ideals, and Quotient Rings

Proposition 26. Ring homomorphisms preserve identities, inverses, and sub-
ring structures; i.e. if φ : R→ R′ is a ring homomorphism then,

1. If 0 is the additive identity of R and 0′ is the additive identity of R′ then
φ(0) = 0′.

2. For all x ∈ R we have φ(−x) = −φ(x).

3. If S and S′ are subrings of R and R′ respectively, then φ(S) and φ−1(S′)
will be subrings of R′ and R respectively.

Proof. 1.
φ(0) = φ(0 + 0) = φ(0) + φ(0) =⇒ φ(0) = 0′.

2. We have
φ(−x) + φ(x) = φ((−x) + x) = φ(0) = 0′

by part 1. So by the uniqueness of additive inverses in the abelian group
(R′,+) we conclude φ(−x) = −φ(x).

3. It is enough to show that φ(S) and φ−1(S′) are closed under ring opera-
tions and additive inverses. Note that φ is also an abelian group homo-
morphism and S and S′ are additive subgroups of R and R′, respectively.
So φ(S) and φ−1(S) will be abelian subgroups, and therefore closed un-
der addition and taking additive inverses. Now, φ(x)φ(y) = φ(xy) and
since S is closed under multiplication we conclude φ(S) is closed under
multiplication, and for a, b ∈ φ−1(S′) we have φ(ab) = φ(a)φ(b) and since
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S′ is closed under multiplication, φ−1(S′) is closed under multiplication.
Therefore φ−1(S′) and φ(S) are rings.

The definition of the kernel is similar:

Definition 37. Let φ : R → R′ be a ring homomorphism. The pre-image of
the trivial subring {0′} ⊆ R′ is said to be the kernel of φ.

Remark. By the structure preserving property of homomorphisms, the kernel
is always a subring.

Again, the kernel has the property that if two elements have the same image
under a homomorphism, then their difference is an element of the kernel. More
formally,

Proposition 27. If φ : R→ R′ is a ring homomorphism, then

φ−1(φ(a)) = a+ kerφ = kerφ+ a.

Proof. Since addition is commutative clearly a+ kerφ = kerφ+a. Also, clearly
h ∈ kerφ implies φ(a+h) = φ(h+a) = φ(a). Now, suppose φ(b) = φ(a). Then,
by the fact that homomorphisms preserve additive inverses we get φ(b− a) = 0
so b− a ∈ kerφ or equivalently b ∈ a+ kerφ.

Corollary. A ring homomorphism is injective if and only if its kernel is trivial.

Remark. Similar to how we could define quotient groups from the cosets of
the kernels of group homomorphisms, we can define quotient rings from the
cosets of the kernels of ring homomorphisms. In group theory, the notion of a
normal subgroup allowed us to generalize the construction of quotient groups
from cosets of the kernel, to the cosets of any normal subgroup. The analogous
to the notion of a normal subgroup in group theory, we can define an ideal of a
ring. The definition of the ideal is motivated by the following observation.

Proposition 28. Suppose R is a ring and H is a additive subgroup of R.
Multiplication of cosets as

(a+H)(b+H) = ab+H

is well-defined if and only if for any x ∈ R we have xH ⊆ H and Hx ⊆ H; i.e.
H is closed under multiplication by any element of R.

Proof. First suppose that the coset product is well-defined. This means that, in
particular for any x ∈ R we must have (x+H)(0+H) = x0+H, or equivalently
(x + H)H = H. This implies that for any h ∈ H since 0 is a member of any
additive subgroup we must have (x + 0)h = xh ∈ H, and therefore xH ⊆ H.
Similarly we can show that Hx ⊆ H.
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Now suppose for any x ∈ R both xH ⊂ H and Hx ⊂ H hold. Take any
h1, h2 ∈ H and note that

(a+ h1)(b+ h2) = ab+ ah2 + h1b+ h1h2.

By our assumption, ah2, h1b, h1h2 ∈ H, and since H is an additive group their
sum must be in H. We conclude that (a+ h1)(b+ h2) ∈ ab+H and therefore
the coset product is independent of the chosen representatives.

Definition 38 (ideal). Let R be a ring and I be an abelian subgroup of R such
that for any x ∈ R we have xI ⊆ I and Ix ⊆ I. We call I an ideal of the ring
R.

Definition 39. Let I be an ideal in the ring R. The quotient (factor) ring R/I
is the set of all additive cosets of I equipped with addition and multiplication
defined by

(a+ I)(b+ I) = ab+ I (a+ I) + (b+ I) = (a+ b) + I.

Remark. Note that R under addition is an abelian group and so any additive
subgroup of R is a normal subgroup with respect to which coset addition is
well-defined. Also, by the motivation of the definition of an ideal, coset multi-
plication is well-defined for ideals so the operations on R/I are well-defined. The
rest of the properties of ring operations on R/I follow from the corresponding
properties in R.

Theorem 9 (The Fundamental Homomorphism Theorem for Rings). Suppose
φ : R→ R′ is a ring homomorphism. Then kerφ is an ideal and R/ kerφ ' φ(R)
under the isomorphism µ : R/ kerφ→ φ(R) given by µ(x+ kerφ) = φ(x).

Conversely, if I is an ideal of R then I is the kernel of the homomorphism
γ : R→ R/I given by γ(x) = x+ I, and trivially γ(R) = R/I ' R/I.

Proof. First, suppose φ : R → R′ is a ring homomorphism, and note that for
any h ∈ kerφ and x ∈ R we have

φ(hx) = φ(h)φ(x) = 0φ(x) = 0 φ(xh) = φ(h)φ(x) = φ(x)0 = 0.

Also, since φ is an additive group homomorphism, we know that its kernel will
be an additive subgroup of R, and so kerφ is an ideal. Since kerφ is an ideal,
the ring R/ kerφ is well-defined. Now consider the mapping µ, as defined in
the theorem statement. First, note that the mapping is well-defined, since if
x+ kerφ = x′ + kerφ there must exist h ∈ kerφ so that x′ = x+ h and since φ
is a homomorphism we can write

µ(x+ kerφ) = φ(x) = φ(x) + 0 = φ(x) + φ(h) = φ(x′) = µ(x′ + kerφ).
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Hence, µ is a well-defined mapping. Similarly, using the homomorphism prop-
erties of φ we can write

µ((x+ kerφ) + (y + kerφ)) = µ((x+ y) + kerφ)

= φ(x+ y)

= φ(x) + φ(y)

= µ(x+ kerφ) + µ(y + kerφ)

and

µ((x+ kerφ)(y + kerφ)) = µ((xy) + kerφ)

= φ(xy)

= φ(x)φ(y)

= µ(x+ kerφ)µ(y + kerφ).

So µ is a homomorphism. Also, note that µ(x + kerφ) = 0 implies φ(x) = 0
which is equivalent to x being in kerφ. So the kernel of µ is the coset 0 + kerφ
which is the additive identity over R/ kerφ. Since µ has a trivial kernel, it must
be injective. Also, µ is clearly surjective. So µ is a bijective homomorphism,
and therefore an isomorphism.

Now suppose I is an ideal and consider the mapping γ defined in the theorem
statement. We can easily see that γ is a homomorphism:

γ(x+ y) = (x+ y) + I = (x+ I) + (y+ I) γ(xy) = (xy) + I = (x+ I)(y+ I).

Also, note γ(x) = 0+I implies x+I = 0+I or equivalently x ∈ I. Also, clearly
γ(I) = 0 + I so ker γ = I.

Remark. Analogous to the case of groups, the fundamental homomorphism
theorem shows us that ideals and kernels of ring homomorphism are the same.

Definition 40 (Principal Ideal). A principle ideal of a commutative ring R is
an ideal of the form {ra|r ∈ R}. The set {ra|r ∈ R} is said to be the principal
ideal generated by a and is denoted by 〈a〉.

Definition 41 (Principal Ideal Domain). A principal ideal domain (PID) is an
integral domain in which every ideal is principal.

Proposition 29. Z is a principal ideal domain.

Proof. Similar to subgroup of cyclic group cyclic.

Lastly, we establish necessary and sufficient conditions for when a quotient
ring is a field or integral domain. Before doing so we recall some standard
terminology.

Definition 42. Let R be a ring. The ideal I of R is said to be trivial if I = {0},
and improper if I = R. If I 6= R it is said to be a proper ideal, and if I 6= {0}
it is said to be a non-trivial ideal.
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The following lemma is useful in achieving our goal of classifing quotient
rings that are fields or integral domains.

Proposition 30. If an ideal contains a unit, then it is improper.

Proposition 31. Suppose I is an ideal of the ring R, and u ∈ I is a unit.
Since u is a unit it posesses a multiplicative inverse u−1 in R, and sice I is
closed under multiplication by elements in R we must have uu−1 = 1 be in I.
Now since 1 ∈ I and xI ⊆ I for all x ∈ R we must have R ⊆ I. So I = R, and
therefore I is improper.

Proposition 32. Let R be a ring with unity, and M ⊆ R be an ideal of R. The
quotient ring R/M is a field if and only if no other proper ideal contains M .

Proof. First, suppose R/M is a field. This means that for any u 6∈ I we can
find u−1 so that (u+ I)(u−1 + I) = 1 + I.... finish.

Definition 43 (Maximal Ideal).

Definition 44 (Prime Ideal). An ideal I ⊆ R is prime if ab ∈ I implies a ∈ I
or b ∈ I.

Proposition 33. R/N is an integral domain iff N prime.

Corollary. Every maximal ideal is prime.

Remark. The trivial ideal is prime, and can be maximal (in which case R is a
field).

3.3 Wedderburn’s Little Theorem

Proposition 34 (Wedderburn’s Little Theorem). Every finite division ring is
a field.

3.4 Field of Fractions of an Integral Domain

The construction is the abstract version of going from Z to Q. Given an integral
domain D define the relation ∼ on D ×D by

(a, b) ∼ (c, d) ⇐⇒ ad = bc,

and let frac(D) be the set of equivalence classes of D× (D \ {0}) with multipli-
cation and addition defined as follows

[(a, b)] + [(c, d)] = [(ad+ bc, bd)] [(a, b)] · [(c, d)] = [(ac, bd)].

It is easy (yet tedious) to see that the above operations are well-defined and
make frac(D) into a field.

Definition 45 (Embedding). A ring homomorphism φ : R → R′ is said to be
an embedding of R in R′ if φ(R) ' R′.
Proposition 35. The field of quotients of an integral domain is its minimal
super-field. That is, if F is field and D is an integral domain embedded in F ,
then F has a subfield isomorphic to the field of quotients of D.
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3.5 Polynomials

Definition 46 (Ring of Formal Power Series). Let R be a commutative ring
with identity. The ring of formal power series over R in one indeterminate
(denoted by R[[x]]) consists of the set of all sequences P = (p0, p1, . . .) in R,
with addition and multiplication defined by

(P +Q)i = pi + qi (PQ)i =

i∑
j=0

pjqi−j .

We define the special elements 0 = (0, 0, . . .), x0 := 1 := (1, 0, . . .), and x =
(0, 1, 0, . . .).

Remark. Since addition of formal power series is defined term-by-term and R
is an abelian group under addition, R[[x]] is an abelian group under addition.
It is easy to see that 1, as defined above, is an identity element:

(P · 1)i =

i∑
j=0

pjδ0,i−j = pi =

i∑
j=0

δ0,jpi−j = (1 · P )i.

It is not hard to see (add later) that multiplication is associative and commuta-
tive, and so R[[x]] is a commutative ring with identity. This allows us to define
integer powers of polynomials. In particular, we can see that xij = δij . Equating
the element a of R with the formal power series (a, 0, . . .), we can represent the
formal power series P = (p0, p1, . . .) by

P =

∞∑
i=0

pi · xi.

Definition 47. Given a commutative ring R, the ring of polynomials in x over
R (denoted by R[x]) consists of all elements of R[[x]] that have finitely many
non-zero terms.

Remark. By definition R[x] ⊆ R[[x]] and clearly R[x] is closed under formal
power series addition and multiplication. So, indeed, R[x] is a commutative
ring.

Proposition 36. If D is a commutative domain, then D[x] is a domain.

Proof.

Definition 48 (Degree of a Polynomial). The degree of P ∈ R[x] is given by

degP =

{
−∞ P = 0

max{n ∈ N ∪ {0}; pn 6= 0} o.w..
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3.6 Ideals In Polynomial Rings

Proposition 37. For any field F , the polynomial ring F [x] is a principal ideal
domain.

Proof. similar to the case of Z.

Proposition 38. For a non-constant polynomial f ∈ F [x], the principal ideal
〈f(x)〉 is maximal in F [x] if and only if f is irreducible over F .

Proof. If f is reducible to pq certainly 〈f〉 ⊆ 〈p〉 and so 〈f〉 is not maximal.
Suppose f irreducible and assume I is an ideal such that 〈f〉 ⊆ I. Since

F [x] is a PID we must have I = 〈g〉 for some g. This implies f = gq for some q
since g ∈ I, but we must have deg q = 0 or deg g = 0 since otherwise f will be
reducible. If deg g = 0 the ideal I is improper, and if deg g = 0 then 〈g〉 = 〈f〉.
So 〈f〉 is maximal.

Corollary. We can conclude that the quotient ring F [x]/〈f〉 for a non-constant
polynomial f is a field if and only if f is irreducible in F [x].

Proposition 39 (Euclid’s Lemma for Polynomials). Let F be a field. If p ∈
F [x] is irreducible and p|fg then p|f or f |g.

Proof. Since p divides fg we must have fg ∈ 〈p〉. Since p is irreducible, 〈p〉
is maximal, and therefore prime. Hence, we must either have f ∈ 〈p〉 or g ∈
〈p〉.

Proposition 40. Let F be a field. Any p ∈ F [x] can be factored as a product
of irreducible polynomials in F [x], and the factorization is unique up to order
and constant factors.

3.7 Field Extensions

Definition 49. A field F is said to be an extension of the field E if F contains
a subfield isomorphic to E.

Theorem 10 (Kronecker’s Theorem). Given any field F and polynomial f ∈
F [x], there exists an extension of F such that f has a root in E[x].

Proof. 1. If f has a root in F there’s nothing to be done.

2. If f has no root in F , we can assume f is irreducible since f can be written
as a product of irreducible factors, and if we can find an extension of F
over which one of these factors has a root, f will have a root over that
extension field. So assume f is irreducible.

3. We just showed that E = F [x]/〈f〉 is a field. We claim E extends F and
f has a root in E.
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4. First consider the mapping φ : F → E given by φ(a) = a+ 〈f〉. It is easy
to see that E is a ring homomorphism, and that kerE = {0} so E is an
isomorphism between F and φ(F ). So E is an extension of F .

5. Now let f = a0 + a1x+ . . .+ anx
n and note that for α = x+ 〈f〉 we have

f̃(α) =

n∑
i=0

(ai + 〈f〉)(x+ 〈f〉)i =

n∑
i=0

aix
i + 〈f〉 = f(x) + 〈f〉 = 0 + 〈f〉.

So α is a root of f in E.

Definition 50 (Algebraic and Transcendental Elements). Let E be an extension
field of the field F . An element α ∈ E is said to be algebraic over F if it is a root
of a polynomial in F [x], and it is said to be transcendental over F otherwise.

Proposition 41. If E is an extension field of the field F , and element α ∈ E is
transcendental over F , if and only if the evaluation homomorphism ϕα : F [x]→
E given by ϕα(f) = f̃(α) is injective. Note that in this case F [x] is isomorphic
to a subring of E.

Proof. The homomorphism ϕα is injective, if and only if it has a trivial kernel.
In which case there are no polynomials in F [x] that have α as a root; i.e. α is
a transcendental element over F .

Remark. We can see that if α ∈ E is an algebraic element over F then the
kernel of the homomorphism ϕα is non-trivial, and since F [x] is a principal ideal
domain ideal domain we must have kerϕα = 〈g〉 for some polynomial g ∈ F [x].
Note that g must be irreducible since if g = pq then where none of p or q are
constant, then either p̃(α) = 0 or q̃(α) = 0 and in both cases the kernel cannot
be limited to 〈g〉. This also implies that if α is a root of f ∈ F [x] we must have
g|f , and so among all polynomials that have α as a root g is has the smallest
degree. This implies that g is unique up to a multiplicative factor. All this
motivates the following definition.

Definition 51. If E is an extension field of the field F , and the element α ∈ E
is algebraic over F then the monic polynomial g ∈ F [x] that has α as a root
and has the smallest degree among such polynomials is said to be the minimal
polynomial of α over F .

Definition 52. The degree of an algebraic element over a field is the degree of
its minimal polynomial.

Definition 53 (Simple Extension).

Proposition 42. A simple extension F (α) of F where α is algebraic and
deg(α, F ) = n is a vector space over F for which {1, α, . . . , αn} is a basis.
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3.8 Applications to Elementary Number Theory

3.9 Polynomial Factorization over Z and Q
Proposition 43 (Gauss’s Lemma). If f ∈ Z[x], then r, s ∈ Q[x] such that
f = rs exist, if and only if p, q ∈ Z[x] exist such that f = pq and deg p = deg r
and deg q = deg q.

Corollary. If a monic polynomial in Z[x] with non-zero constant term has a
rational root, then it must have an integer root that divides its constant term.

Theorem 11 (Eisenstein Criterion). Let f = f0 +f1x+ . . .+fnx
n be a polyno-

mial in Z[x], and suppose p is a prime number. The polynomial f is irreducible
over Z if the following hold:

1. p 6 |fn

2. for all 0 ≤ i < n, we have p|fi

3. p2 6 |f0

Proof. Assume

f(x) = (prx
r + . . .+ p0)(qsx

s + . . .+ q0)

with r, s < n.

1. Use Euclid’s lemma to show that we can WLOG assume p|p0 but p|q0.

2. Assume for some p|pj for all 0 ≤ j ≤ i < r and show that p|pi+1 since we
must have p|ai+1.

3. Hence, all the pis are multiples of p and so all the fi must be. This
contradicts p 6 |fn.

Corollary. By Gauss’s Lemma, if the Eisenstein criterion holds for a polyno-
mial f ∈ Z[x] for a prime p, then f is irreducible over Q.

Proposition 44. If p is a prime, then the p-th cyclotomic polynomial

Φp(x) =
xp − 1

x− 1

is irreducible over Q.

Proof. If Φp(x) reducible then Φp(x+ 1) reducible and

Φp(x+ 1) =

p∑
i=1

(
p

i

)
xi−1

which satisfies an Eisenstein criterion at p.
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3.9.1 An Alternate Proof of Euler’s Theorem

Proposition 45. The set of elements in a ring with no zero divisors form a
group under multiplication.

3.9.2 Solving ax = b in Z/nZ

Proposition 46 (Zero Divisors in Zn).
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