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1 Probability Spaces

Definition. A probability space is a triple (Ω,F ,P) where:

• Ω is a set known as the sample space.

• F ⊆ 2Ω is a σ-field with each A ∈ F known as an event.

• P is a measure over F so that P (Ω) = 1 (such a measure is called a
probability measure).

This definition relies on several other definitions. Most prominently that of
a σ-field.

Definition. A σ-field (or σ-algebra) F over the set Ω is a subset of 2Ω so that:

1. ∅ ∈ F ;

2. A ∈ F =⇒ Ac := Ω \A ∈ F ;

3. If {Ai} is a countable collection of sets in F then ∪iAi ∈ F .

That is, F contains the empty set and is closed under complements and count-
able unions.

De Morgan’s laws imply that any σ-field is closed under countable intersec-
tions, since ⋂

i

Ai =

(⋃
i

Aci

)c
.

σ-fields are the suitable domains over which we can define the notion of
measure of sets. Since P is a measure, it is fitting to give a general definition.

Definition. A measure µ over the σ-field F is a map µ : F → R so that

1. µ(A) ≥ 0 for all A ∈ F ;

2. If {Ai} is a countable collection of pairwise disjoint sets in F then µ (∪iAi) =∑
i µ(Ai).

That is, a measure is a non-negative, countably additive set function over a
σ-field.
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1.1 Basic Properties of Measures

The following basic properties of measures are relevant in our study of proba-
bility theory.

Measure of the Empty Set Since for any A ∈ F we have A∩∅ = ∅ we can
use countable additivity to conclude

µ (A ∪∅) = µ (A) + µ (∅)

but A ∪∅ = A so

µ (A) = µ (A) + µ (∅) =⇒ µ (∅) = 0.

Monotonicity If A ⊆ B for A,B ∈ F we have

B = (B \A) ∪A (B \A) ∩A = ∅

therefore
µ(B) = µ (B \A) + µ(A)

since µ (B \A) ≥ 0 we conclude µ(B) ≥ µ(A).

Subadditivity Suppose {Ai} is a countable collection of sets in F . Let

Bn = An \
n−1⋃
i=1

Ai.

Clearly {Bi} are pairwise disjoint and ∪iAi = ∪iBi, hence

µ (∪iAi) = µ (∪iBi) =
∑
i

µ(Bi).

At the same time Bi ⊆ Ai so by monotonicity µ(Bi) ≤ µ(Ai). We there-
fore conclude

µ (∪iAi) ≤
∑
i

µ(Ai).

Continuity from Below Suppose An ↑ A. Let B1 = A1 and

Bn = An \An−1 n ≥ 2.

Clearly Bn are disjoint and

∪∞n=1Bn = ∪∞n=1An = A.

Therefore,

µ(A) = µ (∪∞n=1Bn) =

∞∑
n=1

µ(Bn) = lim
N→∞

N∑
n=1

µ(Bn) = lim
N→∞

µ(AN ).

Hence, µ(An) ↑ µ(A).
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Continuity from Above Suppose An ↓ A. Then A1 \An ↑ A1 \A. Hence

µ(A1\An) ↑ µ(A1\A) =⇒ µ(A1)−µ(An) ↑ µ(A1)−µ(A) =⇒ µ(An) ↓ µ(A).

Remark. It is reasonable to question why F needs to be explicitly identified
in the definition of a probability space. That is, why can’t we always take F =
2Ω? The reason behind this requirement is that in many cases it is impossible
to define a well-behaving measure that is defined for every subset of Ω. For
instance, any “reasonable” measure cannot be defined for every subset of the
unit interval. That is, if µ is a measure that is invariant under translation and

µ([a, b]) = b− a

then it cannot be defined on every set. To illustrate this point, we use a simple
construction by Vitali. Define the equivalence relation ∼ on the unit interval so
that

x ∼ y ⇐⇒ y − x ∈ Q.

This equivalence relation will partition [0, 1]. Utilizing the axiom of choice we
can construct a set V that contains a point from every equivalence class of ∼.
Let {qn} be an enumeration of the rationals in the unit interval. It is easy to
confirm that the translated sets V + qn are disjoint and that

[0, 1] ⊆
⋃
n

(V + qn) ⊆ [0, 2].

Using countable additivity, monotonicity, and translation invariance of µ we
conclude that

µ([0, 1]) ⊆ µ

(⋃
n

(V + qn)

)
⊆ µ([0, 2]) =⇒ 1 ≤

∑
n

µ(V ) ≤ 2.

It is obvious that no value of µ(V ) can satisfy the above inequality, therefore µ
cannot be defined on V . A more general and elegant result is given by Banach
and Tarski which we omit.

Remark. In the case where Ω is countable it is possible to take F = 2Ω and
specify P by assigning probabilities to each ω ∈ Ω so that∑

ω∈Ω

P (ω) = 1.

Proposition. Given a collection of σ-fields {Fα}, their intersection ∩Fα is a
σ-field.

The above proposition allows us to give the following definition.

Definition. The Borel σ-field of a topology (Ω, τ), denoted by B((Ω, τ)), is
the intersection of all σ-fields on Ω that contain τ . That is, the Borel σ-field on
a topology is the smallest σ-field that contains all the open sets of the topology.
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Remark. All “reasonable” sets one can think of in Rd are Borel sets. In fact, all
the known constructions of non-Borel sets utilize the axiom of choice in one way
or another. Because of this, the Borel σ-algebra on the d-dimensional Euclidean
space with the usual topology (denoted by B(Rd)) will play a central role in
our study of random variables.

2 Random Variables

Definition. Let (Ω1,F1) and (Ω2,F2) be measurable spaces. A measurable
map f : Ω1 → Ω2 satisfies

∀A ∈ F2; f−1(A) ∈ F1.

Definition. Given a probability space (Ω,F ,P), a d-dimensional random vector
X is a map X : Ω→ Rd so that

∀A ∈ B(Rd);X−1(A) ∈ F .

That is, X is a measurable map from (Ω,F) to (Rd,B(Rd)).

Definition. The distribution function FX of a random vector X is a map
FX : B(Rd)→ [0, 1] so that

∀A ∈ B(Rd);P
(
X−1(A)

)
= FX(A).

Remark. Note that FX is a probability measure on (Rd,B(Rd)):

1. Clearly FX is non-negative since P is non-negative.

2. Given disjoint sets Ai ∈ B(Rd) we have

P

(
X−1

(⋃
i

Ai

))
= FX

(⋃
i

Ai

)

by definition. Also,

P

(
X−1

(⋃
i

Ai

))
= P

(⋃
i

X−1(Ai)

)
=
∑
i

P
(
X−1(Ai)

)
=
∑
i

FX(Ai)

so FX is countably additive.

3. Clearly
FX(Rd) = P

(
X−1(Rd)

)
= P (Ω) = 1.
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Remark. We use the following conventional notation when denoting probabil-
ities of events involving random variables:

P
(
X−1(A)

)
:= P (X ∈ A) (A ∈ F)

P
(
X−1(ω)

)
:= P (X = ω) (ω ∈ Ω)

P
(
X−1((−∞, x])

)
:= P (X ≤ x) (Im(X) = R, x ∈ R)

P (X < x), P (X ≥ x), and P (X > x) are defined in the same manner as the last
definition above.

Definition. The distribution of a random vector X is said to be absolutely
continuous if a map fX : Rd → R≥0 exists so that

∀B ∈ B(Rd);P (X ∈ B) =

∫
B

fXdµ

where µ is the Lebesgue measure on Rd. Such fX is called the density function
of X,

Proposition. Given FX we can find fX by

fX(x) = lim
B

FX(B)

µ(B)

where B ranges over neighborhoods of x with diameter ↓ 0.

2.1 Expectation

Definition. If X is a d-dimensional random vector with density fX and φ :
Rd → R, then the expectation of the random variable φ(X) is defined by

E [φ(X)] =

∫
Rd
φ · fXdµ

where µ is the Lebesgue measure. We require φ to be a measurable map for
φ(X) to be a random variable. We also require that∫

Rd
|φ| · fXdµ <∞

for the expectation to be well-defined.

2.2 Marginal, Joint, and Conditional Densities

Suppose X = (X1, . . . , Xd) is a d-dimensional random vector, and let Y =
(X1, . . . , Xk) and Z = (Xk+1, . . . , Xd); i.e. X = (Y,Z). Let fX := fY,Z be the
density of X. Note that for any B ∈ B(Rk) we have

P (Y ∈ B) = P
(
(Y, Z) ∈ B × Rd−k

)
=

∫
B×Rd−k

fXdµ
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where µ is the Lebesgue measure on Rd. Noting that any density function is
non-negative by definition and that the Lebesgue measure is σ-finite, we can
apply Fubini’s theorem to the above integral to get

∴ P (Y ∈ B) =

∫
B

∫
Rd−k

fY,Z(y, z)µ1(dz)µ2(dy).

where µ1 and µ2 are Lebesgue measure on the appropriate spaces. This shows
that Y must be absolutely continuous with density

fY (y) =

∫
Rd−k

fY,Z(y, z)dz.

The density fX = fY,Z is known as the joint density of random vectors Y and
Z. The density fY is known as the marginal density of Y . Now consider the
points

y = (y1, . . . , yk) z = (z1, . . . , zd−k)

and let ∆z and ∆y be small boxes including these points; that is

∆y = ∆y1 ×∆y2 × . . .×∆yk ∆z = ∆z1 ×∆z2 × . . .×∆zd−k

where each ∆yi is a segment containing yi, ditto ∆zi. Using the definition of
conditional probability we have

P (z ∈ ∆z|y ∈ ∆y) =
P (z ∈ ∆z, y ∈ ∆y)

P (y ∈ ∆y)
.

When ∆y and ∆z are small, we can intuitively write the above equation as

P (z ∈ ∆z, y ∈ ∆y)

P (y ∈ ∆y)
≈ fY,Z(y, z) · µ(∆y ×∆z)

fY (y) · µ(∆y)
=
fY,Z(y, z)

fY (y)
· µ(∆z).

In summary, we have

P (z ∈ ∆z|y ∈ ∆y) ≈ fY,Z(y, z)

fY (y)
· µ(∆z).

This motivates the following definition:

Definition. Given two random vectors Y and Z with joint density fY,Z if the
marginal density of Y , fY , is positive we define the conditional density of
Z given Y as

fZ|Y (z|y) =
fZ,Y (z, y)

fY (y)
.

Another way to motivate the above definition, is by looking at the expecta-
tion of φ(Y,Z):

E [φ(Y,Z)] =

∫
Rd
φ(y, z)fY,Z(y, z)dµ
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since φ has to be absolutely integrable we can again apply Fubini’s theorem to
see

E [φ(Y, Z)] =

∫
Rk

∫
Rd−k

φ(y, z)
fY,Z(y, z)

fY (y)
dµ1(z)fY (y)dµ2(y)

which again suggests we set

fZ|Y (z|y) =
fZ,Y (z, y)

fY (y)
.

2.3 Independence

Definition. Two events A,B ∈ F are said to be independent (denoted A ⊥⊥
B) iff

P (A ∩B) = P (A)P (B) .

If the events have non-zero probabilities we have the following equivalent
conditions that are more intuitive

A ⊥⊥ B ⇐⇒ P (A|B) = P (A) ⇐⇒ P (B|A) = P (B) .

Similarly, we say two random variables X and Y are independent if for any two
appropriate Borel sets A and B we have

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B) .

Note that in this case we will have

fX,Y (x, y) = fX(x)fY (y)

which implies that

fX|Y (x|y) = fX(x) fY |X(y|x) = fY (y).

2.4 Change of Variables

Consider the problem of finding the density of the random variable Y = g(X)
where X is a random variable with known density fX and g : R→ R is a strictly
increasing differentiable function. If fY is the density of Y , we must have

P (Y ≤ y) =

∫ y

−∞
fY (t)dt.

Therefore, by applying the fundamental theorem of calculus we get

fY (y) =
d

dy
P (Y ≤ y) . (1)

On the other hand
P (Y ≤ y) = P (g(X) ≤ y) .
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Since g is strictly increasing it must be injective with an increasing inverse;
hence,

P (g(X) ≤ y) = P
(
X ≤ g−1(y)

)
=

∫ g−1(y)

−∞
fX(s)ds.

At this point we can use (1) in addition to the fundamental theorem of calculus
and the chain rule to find fY . This solution does not generalize well to higher
dimensions, so instead we perform the change of variables

r = g(s) ⇐⇒ s = g−1(r)

which gives

P (Y ≤ y) =

∫ y

−∞
fX(g−1(r))g−1′(r)dr

and ultimately using (1) and the fundamental theorem of calculus

fY (y) = fX(g−1(y))g−1′(y).

We can carry out a similar process for higher dimensional random vectors.
If X is a d-dimensional random vector and g : Rd → Rd is injective and contin-
uously differentiable (hence measurable), we can find the density of Y = g(X)
by noticing that if extant, it must satisfy

P (Y ∈ B) =

∫
B

fY (y)µ(dy)

for any Borel set B. Also,

P (Y ∈ B) = P (g(X) ∈ B) = P
(
X ∈ g−1(B)

)
(2)

the last equality holds because g is injective and measurable. Given the density
of X we can write

P
(
X ∈ g−1(B)

)
=

∫
g−1(B)

fX(x)µ(dx).

Since g is injective and continuously differentiable we can perform the change
of variables

x = g−1(y) µ(dx) = µ(dg−1(y)) = |det Jg−1 |µ(dy)

where Jg−1 is the Jacobian determinant of g−1 (or equivalently the inverse Ja-
cobian determinant of g given by

Jg−1(i, j) =
∂xi
∂yj

where
(x1, . . . , xd)

g7−→ (y1, . . . , yd).
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Hence,

P
(
X ∈ g−1(B)

)
=

∫
B

fX(g−1(y))|det Jg−1 |µ(dy)

which combined with (2) gives us

∴ P (Y ∈ B) =

∫
B

fX(g−1(y))|det Jg−1 |µ(dy);

i.e.
fY (y) = fX(g−1(y))|det Jg−1 |.

We can summarize as follows:

Proposition 1. Let X have density fX and assume there is an open set S ⊆ Rd
such that P (X ∈ S) = 1 and on S the mapping g : Rd → Rd is one to one and
continuously differentiable with Jacobian determinant nonzero at each point of
S. Then the random vector Y = g(X) has an absolutely continuous distribution
with density fY given by

fY (y) = fX(g−1(y))|det Jg−1 |1g(S)(y).

3 The Dirichlet Distribution

The following property of the gamma distribution is central to our analysis of
the Dirichlet distribution.

Proposition (Additivity of Gamma Random Variables). Suppose for indepen-
dent random variables X1 and X2 we have

X1 ∼ gamma(α1, β),

X2 ∼ gamma(α2, β),

Y := X1 +X2

then,
Y ∼ gamma(α1 + α2, β) .

Proof. Since X1 and X2 are independent, the density of Y is given by the
convolution

fY (y) =

∫ +∞

−∞
fX1

(t)fX2
(y − t)dt.
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Both X1 and X2 have positive support, so

fY (y) =

∫ y

0

fX1(t)fX2(y − t)dt

=

∫ y

0

βα1

Γ(α1)
tα1−1e−βt

βα2

Γ(α2)
(y − t)α2−1e−β(y−t)dt

=
βα1+α2

Γ(α1)Γ(α2)
e−βy

∫ y

0

tα1−1(y − t)α2−1dt.

(3)

Letting t = ys in the last integral we get∫ y

0

tα1−1(y− t)α2−1dt = yα1+α2−1

∫ 1

0

sα1−1(1− s)α2−1ds = yα1+α2−1B(α1, α2)

(4)
where B(·, ·) denotes the beta function. Applying the identity

B(α1, α2) =
Γ(α1)Γ(α2)

Γ(α1 + α2)

and combining (3) and (4) we get

∴ fY (y) =
βα1+α2

Γ(α1 + α2)
yα1+α2−1e−βy.

Proposition 2. Let X1, . . . , Xn+1 be independent and assume

Xi ∼ gamma(αi, β)

Let
Si := X1 + . . .+Xi 1 ≤ i ≤ n+ 1

and

Vi :=
Xi

Sn+1
.

Then (V1, . . . , Vn+1) and Sn+1 are independent and the random vector V =
(V1, . . . , Vn) has an absolutely continuous distribution with density

fV(v1, . . . , vn) =
1

D(α1, . . . , αn+1)

(
n∏
i=1

vαi−1
i

)(
1−

n∑
i=1

vi

)αn+1−1

1An(v1, . . . , vn)

(5)
where D is defined as

D(α1, . . . , αn+1) =
Γ(α1) . . .Γ(αn+1)

Γ(α1 + . . .+ αn+1)
(6)
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and An is the standard n-dimensional simplex given by

An =

{
(v1, . . . , vn)

∣∣∣∣∣vi ≥ 0,

n∑
i=1

vi ≤ 1

}

Proof. First, note that by additivity of gamma random variables Sn+1 must
have density

fSn+1
(s) =

βα1+...+αn+1

Γ(α1 + . . .+ αn+1)
sα1+...+αn+1−1e−βs (7)

Now consider the map g : Rn+1 → Rn+1 so that

(x1, . . . , xn+1) 7→ (v1, . . . , vn, s)

where
s = x1 + . . .+ xn+1 vi =

xi
s

1 ≤ i ≤ n.

Note that g is absolutely continuous and invertible on An+1, moreover

xi = vis 1 ≤ i ≤ n xn+1 = s(1− v1 − . . .− vn). (8)

Note that
(V1, . . . , Vn, Sn+1) = g(X1, . . . , Xn+1)

so we can use proposition 1 to conclude that (V1, . . . , Vn, Sn+1) must have den-
sity

f(v1, . . . , vn, s) = fX1,...,Xn+1(g−1(v1, . . . , vn, s))|det Jg−1(v1, . . . , vn, s)| (9)

Using (8) we can find the Jacobian determinant

det Jg−1(v1, . . . , vn, sn+1) =

∣∣∣∣∣∣∣∣∣∣∣

s 0 . . . 0 v1

0 s . . . 0 v2

...
. . .

...
...

0 0 . . . s vn
−s −s . . . −s 1−

∑n
i=1 vi

∣∣∣∣∣∣∣∣∣∣∣
since adding a multiple of a row to another doesn’t change the determinant, we
can add the first n rows to the last row to get

det Jg−1(v1, . . . , vn, sn+1) =

∣∣∣∣∣∣∣∣∣∣∣

s 0 . . . 0 v1

0 s . . . 0 v2

...
...

. . .
...

...
0 0 . . . s vn
0 0 . . . 0 1

∣∣∣∣∣∣∣∣∣∣∣
= sn.
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So we can simplify (9) to

f(v1, . . . , vn, s) = fX1,...,Xn+1(sv1, . . . , svn, s(1− v1 − . . .− vn)))sn.

since Xi are independent we can write the joint density as a product of marginals
to get

f(v1, . . . , vn, s) =

(
n∏
i=1

βαi

Γ(αi)
(svi)

αi−1e−βsvi

)

× βαn+1

Γ(αn+i)
(s(1−

n∑
i

vi))
αn+1−1e−βs(1−

∑n
i vi)sn.

Simplifying and letting α0 = α1 + . . .+ αn+1 we get

f(v1, . . . , vn, s) =
1∏n+1

i=1 Γ(αi)
vαi−1
i . . . vαn−1

n (1−
n∑
i

vi))
αn+1−1βα0sα0−1e−βs

multiplying and dividing by Γ(α0) we finally get

f(v1, . . . , vn, s) =
Γ(α0)∏n+1
i=1 Γ(αi)

vαi−1
i . . . vαn−1

n (1−
n∑
i

vi))
αn+1−1 βα0

Γ(α0)
sα0−1e−βs.

(10)
Noting that ∫ ∞

0

βα0sα0−1e−βsds = Γ(α0)

we can marginalize s out and conclude

f(v1, . . . , vn) =
1

D(α1, . . . , αn+1)
vα1−1

1 . . . vαn−1
n (1−

n∑
i

vi))
αn+1−1. (11)

Putting together (7), (10), and (11) we can see that the joint density of (V1, . . . , Vn)
and Sn+1 factors into the product of marginal densities of (V1, . . . , Vn) and Sn+1.
Hence, (V1, . . . , Vn) and Sn+1 are independent. Since Vn+1 is determined by
V1, . . . , Vn we finally see that (V1, . . . , Vn+1) and Sn+1 are independent.

Remark. Note that marginalizing vi out of (10) gives an alternate proof of the
additivity of independent gamma random variables.

We are now ready to give the definiton of the Dirichlet distribution:

Definition 1. The Dirichlet distribution on Rn having parameter α =
(α1, . . . , αn+1) where αi > 0 is the absolutely continuous distribution having
the density

1

D(α1, . . . , αn+1)
vα1−1

1 . . . vαn−1
n (1−

n∑
i=1

vi))
αn+1−11An(v).
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Proposition 3. Let V have the Dirichlet distribution on Rn with parameter
α = (α1, . . . , αn+1). Then (Vk+1, . . . , Vn), k < n has the Dirichlet distribution
on Rn−k with parameter

αk = (αk+1, . . . , αn, α1 + . . .+ αk + αn+1).

Proof. Let
U = X1 + . . .+Xk +Xn+1

because of additivity of the gamma distribution we will have

U ∼ gamma(α1 + . . .+ αk + αn+1, β)

and it will be independent of Xk+1, . . . , Xn. Note that

Sn+1 = Xk + . . .+Xn + U.

Applying proposition 2 to the independent gamma random variablesXk, . . . , Xk+1

and U finishes the proof.

Proposition 4. Let V have the Dirichlet distribution on Rn with parameter
α = (α1, . . . , αn+1). Then the conditional distribution of (V1, . . . , Vk), given
Vk+1 = vk+1, . . . , Vn = vn, with

vk+1 > 0, . . . , vn > 0,

n∑
i=k+1

vi < 1 k < n,

is the distribution of
(
1−

∑n
i=k+1 vi

)
W , where W has the Dirichlet distribution

on Rk with parameters (α1, . . . , αk, αn+1).

Proof. Applying the definition of conditional density we have

fV1,...,Vk|Vk+1,...,Vn(v1, . . . , vk|vk+1, . . . , vn) =
fV1,...,Vn(v1, . . . , vn)

fVk+1,...,Vn(vk+1, . . . , vn)
.

By proposition 2

fV1,...,Vn(v1, . . . , vn) =
1

D(α1, . . . , αn+1)
vα1−1

1 . . . vαn−1
n (1−

n∑
i=1

vi)
αn+1−1,

and by proposition 3

fVk+1,...,Vn(vk+1, . . . , vn) =
1

D(αk+1, . . . , αn, αn+1 +
∑k
i=1 αi)

× vαk+1−1
k+1 . . . vαn−1

n (1−
n∑

i=k+1

vi)
αn+1−1+

∑k
i=1 αi .

13



Taking the ratio we will see that the conditional density is of the form

Γ(αn+1 +
∑k
i=1 αi)

Γ(α1) . . .Γ(αk)Γ(αn+1)
vα1−1

1 . . . vαk−1
k

(1−
∑n
i=1 vi)

αn+1−1

(1−
∑n
i=k+1 vi)

αn+1−1+
∑k
i=1 αi

.

Now let c0 =
(
1−

∑n
i=k+1 vi

)
and note that

P (c0W ∈ (v1 − δ/2, v1 + δ/2)× . . .× (vk − δ/2, vk + δ/2))

=P (W ∈ (v1/c0 − δ/2c0, v1/c0 + δ/2c0)× . . .× (vk/c0 − δ/2c0, vk/c0 + δ/2c0))

≈ 1

D(α1, . . . , αk, αn+1)
(v1/c0)α1−1 . . . (vk/c0)αn−1(1−

n∑
i=1

vi/c0)αn+1−1 × δk

ck0

=
Γ(αn+1 +

∑k
i=1 αi)

Γ(α1) . . .Γ(αk)Γ(αn+1)
vα1−1

1 . . . vαk−1
k

(1−
∑n
i=1 vi)

αn+1−1

(1−
∑n
i=k+1 vi)

αn+1−1+
∑k
i=1 αi

δk.

Dividing by the volume of (v1 − δ/2, v1 + δ/2)× . . .× (vk − δ/2, vk + δ/2), i.e.
δk, we can see that the two densities are the same.

Proposition 5. Let V = (V1, . . . , Vn) have the Dirichlet distribution on Rn
with parameter α = (α1, . . . , αn+1). Let V ∗i = V1 + . . .+ Vi, 1 ≤ i ≤ n, and let

V∗ = (V ∗1 , . . . , V
∗
n ).

Then V∗ has an absolutely continuous distribution with density

fV∗(v1, . . . , vn) =
vα1−1

1

∏n
i=2(vi − vi−1)αi−1(1− vn)αn+1−110<v1<...<vn<1

D(α1, . . . , αn+1)
.

Proof. Notice that V∗ = AV where

A =


1 0 0 . . . 0
1 1 0 . . . 0
1 1 1 . . . 0
1 1 1 . . . 1


so the inverse Jacobian determinant of the function that maps V to V∗ is given
by

det(A−1) =
1

det(A)
=

1

1
= 1.

Hence, applying the change of variable formula (proposition 1) we get

fV∗(v1, . . . , vn) = fV(A−1(v1, . . . , vn)′)× 1× 10<v1<...<vn<1

= fV(v1, v2 − v1, . . . , vn−1 − vn−2, vn)10<v1<...<vn<1.

Expanding fV as the density of the Dirichlet distribution on Rn for finishes the
proof.
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Definition 2. The distribution on Rn having the density

f(v1, . . . , vn) =
vα1−1

1

∏n
i=2(vi − vi−1)αi−1(1− vn)αn+1−110<v1<...<vn<1

D(α1, . . . , αn+1)
.

is called the ordered Dirichlet distribution on Rn with parameter (α1, . . . , αn+1).

Proposition 6. Let V have the ordered Dirichlet distribution on Rn with pa-
rameter (α1, . . . , αn+1) and let 1 ≤ i1 < i2 < . . . < ik ≤ n. Set

γ1 = α1 + . . .+ αi1

γj = αij−1+1 + . . .+ αij 2 ≤ j < k

γk = αik + . . .+ αn+1.

Then (Vi1 , . . . , Vik) has the ordered Dirichlet distribution on Rn with parameter
(γ1, . . . , γk).

Proof. Let Sj , Xj be as in proposition 2, and consider the random variables

T1 := Si1 = X1 + . . .+Xi1

Tj := Sij − Sij−1 = Xij−1+1 + . . .+Xij 2 ≤ j ≤ k
Tk+1 := Sn+1 − Sik = Xik+1 + . . .+Xn+1.

By the additivity of the gamma distribution and independence of Xj , we con-
clude that

Tk ∼ gamma(γk, β).

Noting that
k+1∑
i=1

Ti = Sn+1

we can apply proposition 2 to see that (T1/Sn+1, . . . , Tk/Sk+1) has the Dirichlet
distribution on Rk with parameter (γ1, . . . , γk+1). Hence, by proposition 5 we
conclude that(

T1

Sn+1
,
T1 + T2

Sn+1
, . . . ,

T1 + . . .+ Tk
Sn+1

)
∼ OrderedDirichlet(γ1, . . . , γk).

Noting that
j∑
i=1

Ti = Sij

and that (Vi1 , . . . , Vik) is distributed like (Si1/Sn+1, . . . , Sik/Sn+1) we can see
that (Vi1 , . . . , Vik) has the ordered Dirichlet distribution on Rk with parameter
(γ1, . . . , γk+1).
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Proposition 7. Let V have the ordered Dirichlet distribution on Rn with pa-
rameter (α1, . . . , αn+1). Then the conditional distribution of

(V1, . . . , Vk−1, Vk+1, . . . , Vn)

given Vk = vk is like the distribution of (vkX, vk+(1−vk)Y), where X and Y are
independent, X has the ordered Dirichlet distribution on Rk−1 with parameter
(α1, . . . , αk) and Y has the ordered Dirichlet distribution on Rn−k with param-
eter (αk+1, . . . , αn+1). Note that we must have 0 < vk < 1 for the conditional
density to be well defined.

Proof. First note that by definition of conditional density

fV1,...,Vk−1,Vk+1,...,Vn|Vk(v1, . . . , vk−1, vk+1, . . . , vn|vk) =
fV1,...,Vn(v1, . . . , vn)

fVk(vk)

proposition 5 gives us an expression for the numerator and proposition 6 allows
us to find an expression for the denominator. Applying these propositions we
see that the conditional density must be of the form

1
D(α1,...,αn+1)v

α1−1
1

∏n
i=2(vi − vi−1)αi−1(1− vn)αn+1−1

1
D(α1+...+αk,αk+1+...+αn+1)v

α1+...+αk−1
k (1− vk)αk+1+...+αn+1−1,

that is,

Γ(α1 + . . .+ αk)Γ(αk+1 + . . .+ αn+1)

Γ(α1) . . .Γ(αn+1)

vα1−1
1

∏n
i=2(vi − vi−1)αi−1(1− vn)αn+1−1

vα1+...+αk−1
k (1− vk)αk+1+...+αn+1−1

.

(12)
Now let Z = (vkX, vk + (1− vk)Y) where X and Y are independent, X has the
ordered Dirichlet distribution on Rk−1 with parameter (α1, . . . , αk) and Y has
the ordered Dirichlet distribution on Rn−k with parameter (αk+1, . . . , αn+1).
And let g be an operator on Rn−1 that maps (X,Y) to Z; i.e.

(x1, . . . , xk−1, y1, . . . , yn−k)
g7−→ (z1, . . . , zn−1).

It is easy to see that

xj =
1

vk
xj 1 ≤ j ≤ k − 1

yj =
zj+k−1 − vk

1− vk
1 ≤ j ≤ n− k

so the inverse Jacobian determinant of g is given by

det Jg−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
vk

. . .
1
vk

1
1−vk

. . .
1

1−vk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1

vk−1
k (1− vk)n−k

.
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Using change of variables (proposition 1) we get

fZ(z1, . . . , zn−1) = fX,Y
(
g−1(z1, . . . , zk−1)

)
|det Jg−1 |

= fX,Y

(
z1

vk
, . . . ,

zk−1

vk
,
zk+1

vk
, . . . ,

zn−1

vk

)
1

vk−1
k (1− vk)n−k

= fX

(
z1

vk
, . . . ,

zk−1

vk

)
fY

(
zk+1

vk
, . . . ,

zn−1

vk

)
1

vk−1
k (1− vk)n−k

where the last equality results from the independence of X and Y. Expanding
fX and fY and simplifying we see that fZ has the same form as (12).

Remark. Note that proposition 7 implies that given the value of Vk, the random
vectors (V1, . . . , Vk−1) and (Vk+1, . . . , Vn) are conditionally independent.

Definition. Let X1, . . . , Xn denote i.i.d random variables having a common
density function f . Such a collection is called a random sample of size n. For
each ω ∈ Ω, arrange the sample valuesX1(ω), . . . , Xn(ω) in non-decreasing order
X(1)(ω) ≤ . . . ≤ X(n)(ω), where (1), (2), . . . , (n) is a random (i.e. depending on
ω) permutation of 1, 2, . . . , n. The new variables X(1), . . . , X(n)(ω) are called
the order statistics of the random sample. They are also denoted X∗1 , . . . , X

∗
n

and are referred to as the order statistics of the random sample of size n.

Proposition 8. Write f for the common density of the Xi. Then (X∗1 , . . . , X
∗
n)

has density

fX∗ = n!

[
n∏
i=1

f(xi)

]
1x1<...<xn

Proof. Consider the event

P

(
n⋂
i=1

{X∗i ∈ [xi, xi + ∆xi)}

)
= P

(⋃
σ

n⋂
i=1

{Xσi ∈ [xi, xi + ∆xi)}

)

where σ ranges over the permutations of 1, . . . , n. Note that the events associ-
ated with different permuations are disjoint. Hence,

P

(⋃
σ

n⋂
i=1

{Xσi ∈ [xi, xi + ∆xi)}

)
=
∑
σ

P

(
n⋂
i=1

{Xσi ∈ [xi, xi + ∆xi)}

)

since Xi are independent

∑
σ

P

(
n⋂
i=1

{Xσi ∈ [xi, xi + ∆xi)}

)
=
∑
σ

n∏
i=1

P ({Xσi ∈ [xi, xi + ∆xi)}) .
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Using the common density we get

∑
σ

n∏
i=1

P ({Xσi ∈ [xi, xi + ∆xi)}) ≈
∑
σ

n∏
i=1

f(xi)∆xi

since the summands are identical and σ takes over n! values we finally get

P

(
n⋂
i=1

{X∗i ∈ [xi, xi + ∆xi)}

)
≈ n!

n∏
i=1

f(xi)∆xi.

Proposition 8 implies that if U1, . . . , Un are i.i.d. Uniform(0, 1). Then

fU∗(u1, . . . , un) = n!1u1<...<un

which is the ordered Dirichlet distribution with parameter α1 = . . . = αn+1 = 1.
We can summarize as

Proposition 9. Let Y1, . . . , Yn+1 be independent and exponentially distributed
with common parameter β and let Si = Y1 + . . . + Yi, 1 ≤ i ≤ n + 1. Then
(U∗1 , . . . , U

∗
n) and (S1/Sn+1, . . . , Sn/Sn+1) have the same distribution.

Remark. Throughout our analysis of the Dirichlet distribution rarely have we
used the rate parameter (denoted by β) of the involved gamma random variables.
The reason is that a gamma(α, β) random variable X, is distributed the same
as Y/β where Y is a gamma(α, 1) random variable. To see why simply consider

fX(x) =
d

dx
P (X ≤ x) =

d

dx

∫ x

0

βα

Γ(α)
tα−1e−βtdt

performing the change of variable u = βt we get

fX(x) =
d

dx

∫ βx

0

1

Γ(α)
uα−1e−udu =

d

dx
P
(

1

β
Y ≤ x

)
= fY/β(x).

4 The Gaussian Distribution

The following fact is used in our analysis of Gaussian distributions:

Proposition (Cramer-Wold Device). If X = (X1, . . . , Xn)′ is a d-dimensional
random (column) vector, then the distribution of X is uniquely determined by

the distribution of the random variables t′X =
∑d
i=1 tiXi for all t ∈ Rd. That is

if X = (X1, . . . , Xn)′ and Y = (Y1, . . . , Yn)′ are d-dimensional random vectors
and for any t ∈ Rd variables t′X and t′Y are identically distributed, then X
and Y are identically distributed.
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4.1 Mean Vector and Variance-Covariance Matrix

Suppose X = (X1, . . . , Xd)
′ is a random vector. Then, the mean vector and the

variance-covariance matrix of X are given by

E [X] :=

E [X1]
...

E [Xd]

 Cov (X,X)ij := Cov (Xi, Xj) ,

assuming the relevant expectations exist. Recall the definition of the covariance
of two random variables X and Y

Cov (X,Y ) = E [(X − E [X])(Y − E [Y ])] .

Note that if A is a n× d matrix and Y = AX, linearity of expectation implies
that

E [Y]i = E [Yi] = E

 d∑
j=1

AijXj

 =

d∑
j=1

AijE [Xj ] = E [AX]i .

Similarly, bilinearity of covariance implies that

Cov (Y,Y)ij = Cov (Yi, Yj) = Cov

(
d∑
k=1

AikXk,

d∑
l=1

AjlXl

)

=

d∑
k=1

d∑
l=1

AikAjlCov (Xk, Xl)

=

d∑
l=1

d∑
k=1

AikCov (Xk, Xl)A
′
lj

= (ACov (X,X)A′)ij .

4.2 Preliminary Results from Linear Algebra

Let A be a real d×d matrix. Recall that A is said to be symmetric if Aij = Aji.
If in addition to being symmetric, A has the property that for any non-zero
vector t ∈ Rd we have t′At > 0, we say A is a positive definite matrix.
Similarly, if t′At ≥ 0, we say A is non-negative definite (positive semi-
definite). A is said to be orthogonal if A−1 = A′; that is, AA′ = A′A = I. If
for a given λ ∈ C the matrix A− λI is singular (i.e. det(A− λI) = 0), λ is said
to be an eigenvalue of A. If a non-zero vector x satisfies Ax = λx it is said to
be an eigenvector of A associated with the eigenvalue λ.

Remark. We can see that the variance-covariance matrix of a given random
vector is always non-negative definite. Symmetry is clear from definition:

Cov (X,X)ij = Cov (Xi, Xj) = Cov (Xj , Xi) = Cov (X,X)ji .
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Also, note that for any t ∈ Rd we have

t′Cov (X,X) t = Cov (t′X, t′X) = Var (t′X) ≥ 0

based on the bilinearity property of covariance.

Proposition 10 (The Spectral Theorem). Suppose A is a real, symmetric, and
non-negative definite matrix.

• The eigenvalues of A are all real and non-negative, and the eigenvectors
are real.

• If λ0 ≥ 0 is an eigenvalue of A, then the dimension of the subspace
(eigenspace) {x : Ax = λ0x} is the multiplicity of λ0 as a root of the
characteristic polynomial P (λ) = det(A− λI).

• Eigenvectors for different eigenvalues are orthogonal, and we can choose
an orthonormal basis for each eigenspace.

• Let λ1 ≥ . . . ≥ λd ≥ 0 be the eigenvalues of A repeated according to mul-
tiplicity with orthonormal eigenvectors x1, . . . ,xd. Set B = (x1, . . . ,xd).
Then B is orthogonal and

B′AB =

λ1 0
. . .

0 λd

 ⇐⇒ A = B

λ1 0
. . .

0 λd

B′
4.3 Normal Random Vectors

Recall that a random variable X is said to have a normal distribution if X = µ
for some µ ∈ R or it is absolutely continuous with density given by

fX(x) =
1√

2πσ2
e−

(x−µ)2

2σ2

For µ ∈ R and σ ∈ R+. In the latter case we have

E [X] = µ Var (X) = σ2.

Definition. A random vector X on Rd is said to have a normal distribution
on Rd (or to have a multivariate (d-variate) normal distribution) iff t′X
has a normal distribution for each t ∈ Rd.

Proposition 11. Let X have a normal distribution on Rd. Then

1. The distribution of X is uniquely determined by its mean vector E [X] and
its covariance matrix Cov (X,X).

2. Let A be any m × d matrix and γ ∈ Rm. Then Y = AX + γ has a
normal distribution on Rm with mean vector Aµ+γ and covariance matrix
ACov (X,X)A′.
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Proof. 1. Take any t ∈ Rd. Since X is a normal random vector, we know
that t′X will have a normal distribution N (µ∗, σ∗2). By our discussion of
the properties of the mean vector and covariance matrix we have

µ∗ = E [t′X] = t′E [X] σ∗2 = Cov (t′X, t′X) = t′Cov (X,X) t.

Therefore, the mean vector and the covariance matrix completely deter-
mine the distribution of t′X for any t ∈ Rd. Employing the Cramer-Wold
device we conclude that the mean vector and the covariance matrix com-
pletely determine the distribution of X.

2. Note that

t′Y = t′(AX + γ) = t′AX + t′γ = (A′t)′X + t′γ.

Since X is a normal random vector and A′t ∈ Rd we conclude that (A′t)′X
is distributed normally. Also, note that t′γ is a scalar so (A′t)′X+t′γ has
a normal distribution. Hence, Y is a normal random vector. The values
of the parameters are results of the linearity properties of expectation and
covariance.

Example 2. Let Z1, . . . , Zd be independent standard normal random variables
(i.e. E [Zi] = 0 and Var (Zi) = 1). Put Z = (Z1, . . . , Zd)

′. We have

fZ(z1, . . . , zd) =

d∏
i=1

1√
2π
ez

2
i /2 =

1

(2π)d/2
e(z21+...+z2d)/2

more compactly

fZ(z) =
1

(2π)d/2
e|z|

2/2

where z ∈ Rd and |·| denotes the Euclidean norm. Now, let U be any orthogonal
d × d matrix and consider the random vector W = UZ. Applying the change
of variables formula we have

fW(w) = fZ(U−1w)|detU−1|.

Since U is orthogonal we have |detU−1| = 1. Using this fact and expanding
the right-hand side above we get

fW(w) =
1

(2π)d/2
e|U
−1w|2/2,

but

|U−1w|2 =
(
U−1w

)′
U−1w = (U ′w)

′
U ′w = w′UU ′w = w′w = |w|2.

Hence,

fW(w) =
1

(2π)d/2
e|w|

2/2;
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that is, Z and W are identically distributed. Note that no restrictions were
placed on our choice of U , other than it being orthogonal. Hence, by picking
any u ∈ Rd with |u| = 1 and expanding it to an orthonormal basis using the
Gram-Schmidt procedure, we can acquire a new U that has u′ as its first row.
Hence, we can see that u′Z for any u ∈ Rd with |u| = 1 is distributed according
to N (0, 1). Noting this, we observe that for any non-zero t ∈ Rd we can write

t′Z = |t|
(

1

|t|
t

)′
Z

where (
1

|t|
t

)′
Z ∼ N (0, 1).

so

t′Z = |t|
(

1

|t|
t

)′
Z ∼ N (0, |t|2).

Therefore, we conclude that Z has the normal distribution on Rd with parame-
ters

E [Z] = 0 Cov (X,X) = I.

Proposition 12. Let X have a normal distribution on Rd with mean µ and
covariance matrix Σ. Assume Σ has rank r. Then there is a diagonal matrix
D whose first r diagonal entries are positive, and the rest 0, and an orthogonal
matrix B such that Σ = B′DB and X is distributed like B′

√
DZ + µ where Z

has the standard normal distribution on Rd.

Proof. Note that by proposition 11, B
√
DZ + µ is normally distributed on Rd.

Also, note that

Cov
(
B′
√
DZ, B′

√
DZ
)

= B′
√
DCov (Z,Z) (B′

√
D)′ = B′

√
DI
√
D
′
B

= B′DB = Σ.

and
E
[
B′
√
DZ + µ

]
= B′

√
DE [Z] + µ = µ.

Since the mean vector and the covariance matrix completely determine the
distribution of a normal random vector, we conclude that X and B′

√
DZ + µ

are identically distributed.

Remark. Note that only the first r rows of the matrix D are non-zero, hence
we can actually represent X using a standard normal variable on Rr.

We have the following immediate corollary

Proposition 13. Let µ ∈ Rd and let Σ be a d× d non-negative definite matrix.
Then there is a multivariate normal random vector on Rd having mean µ and
covariance matrix Σ.
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Proof. Since Σ is a non-negative definite matrix, by the spectral theorem, we
can find d× d matrices B and D where B is orthogonal and D is diagonal with
non-negative entries where Σ = BDB′. Let Z be a standard normal random
vector on Rd and consider X = B

√
DZ + µ. By proposition 11, X is normally

distributed with mean µ and covariance

B
√
DI(B

√
D)′ = B

√
DI
√
D
′
B′ = B

√
D
√
DB′ = BDB′ = Σ.

Definition 3. A normal distribution on Rd is called nonsingular iff its co-
variance matrix is nonsingular. Otherwise it is called singular. The rank of a
singular distribution is the rank of its covariance matrix.

Proposition 14. Let X have a normal distribution on Rd with mean µ and
covariance matrix Σ. Then X has a nonsingular distribution on Rd iff X has
an absolutely continuous distribution on Rd. In that case the density of X is

(2π)−d/2 (det Σ)
−1/2

exp

[
−1

2
(x− µ)′Σ−1(x− µ)

]
.

Proof. First, suppose X is nonsingular; i.e. Σ is nonsingular. By proposition 13
we know that X = B

√
DZ + µ where Z is a standard normal random vector in

Rd. We can apply the change of variable formula:

fX(x) = fZ((B
√
D)−1(x− µ)) ·

∣∣∣det
(

(B
√
D)−1

)∣∣∣ . (13)

Because Σ is positive semi-definite and nonsingular, the diagonal entries of D
are positive; in addition, B is orthogonal. Hence,

(B
√
D)−1 =

√
D
−1
B′

and ∣∣∣det
(

(B
√
D)−1

)∣∣∣ =
∣∣∣det(B) det

(√
D)−1

)∣∣∣ = |det(B)| 1√
detD

.

The last equality holds since D is diagonal with positive entries. Also, noting
that B is orthogonal (hence |detB| = 1) and that

det Σ = det(BDB′) = detB detD detB′ = detD,

we conclude that ∣∣∣det
(

(B
√
D)−1

)∣∣∣ = (det Σ)−1/2. (14)

Using the density of the standard multivariate normal distribution given in
example 2 we can combine equations (13) and (14).

fX(x) = (2π)−d/2 exp

[
−1

2

∣∣∣(B√D)−1(x− µ)
∣∣∣2] · (det Σ)−1/2. (15)
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We can simplify the argument of the exponential:∣∣∣(B√D)−1(x− µ)
∣∣∣2 =

(
(B
√
D)−1(x− µ)

)′ (
(B
√
D)−1(x− µ)

)
=
(
D−1/2B′(x− µ)

)′ (
D−1/2B′(x− µ)

)
= (x− µ)′BD−1/2D−1/2B(x− µ)

= (x− µ)′BD−1B(x− µ)

= (x− µ)′Σ−1(x− µ).

The last equality holds because

Σ = BDB′ =⇒ Σ−1 = (B′)−1D−1B−1 = (B′)′D−1B′ = BD−1B′.

Substituting back in (15) we get our ultimate density formula

fX(x) = (2π)−d/2(det Σ)−1/2. exp

[
−1

2
(x− µ)′Σ−1(x− µ)

]
.

Now suppose Σ is singular and assume -for contradiction- that it has an
absolutely continuous distribution. Consider the affine transformation T : Rd →
Rd with the rule T (x) = B′x−B′µ and recall that X can be written as B

√
DZ+

µ where Z is a standard normal random vector. Let Y := T (X). We have

Y := T (X) = T (B
√
DZ + µ) = B′B

√
DZ +B′µ−B′µ.

Noting that B is orthogonal and hence B′B = I we can conclude that

∴ Y =
√
DZ.

Since Σ is singular it has zero as an eigenvalue and hence D must have a zero
row which causes the corresponding element of Y, say Yj , to be a constant
random variable taking on 0 with probability 1. On the other hand, since
we have assumer X is absolutely continuous and any affine map is continuously
differentiable, Y must have an absolutely continuous distribution; moreover, our
discussion of marginal densities shows that every one of the random variables
forming Y has an absolutely continuous distribution. Specifically, Yj has to have
an absolutely continuous distribution. But we know that P (Yj ∈ {0}) = 1 while
the set {0} has Lebesgue measure zero. Hence Yj cannot have an absolutely
continuous distribution. Contradiction. Therefore, X cannot have an absolutely
continuous distribution.

The following result is helpful in establishing an important property of in-
dependent normal random vectors

Proposition. Suppose Γ ∈ Rk×k and Ξ ∈ R(d−k)×(d−k) are positive semi-
definite matrices so that

Σ =

[
Γ 0
0 Ξ

]
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is positive semi-definite. Take any µ ∈ Rd and let X be a d-dimensional normal
random vector with mean vector µ and covariance matrix Σ. If[

X̃

Ỹ

]
:= X X̃ ∈ Rk, Ỹ ∈ Rd−k,

and [
ν
ρ

]
:= µ ν ∈ Rk, ρ ∈ Rd−k,

then X̃ ∼ N (ν,Γ), Ỹ ∼ N (ρ,Ξ), and X̃ and Ỹ are independent.

Proof. First take any t ∈ Rd and let t = [t1
′ t2
′]′ where t1 ∈ Rk and t2 ∈ Rd−k.

Then

t′Σt =
[
t1
′ t2

′] [Γ 0
0 Ξ

] [
t1
t2

]
= t1

′Γt1 + t2
′Ξt2

since both Γ and Ξ are positive semi-definite, the right-hand side must be non-
negative, which renders Σ positive semi-definite.

Since both Γ and Ξ are symmetric, we can find orthogonal matrices B and
C and diagonal matrices D and E of appropriate size so that

Γ = BDB′ Ξ = CEC ′.

Note that [
B 0
0 C

] [
B′ 0
0 C ′

]
=

[
BB′ 0

0 CC ′

]
= I,

and also[
B 0
0 C

] [
D 0
0 E

] [
B′ 0
0 C ′

]
=

[
BDB′ 0

0 CEC ′

]
=

[
Γ 0
0 Ξ

]
= Σ.

So we have

X =

[
B 0
0 C

] [√
D 0

0
√
E

]
Z,

where Z = [Z1 . . . Zd]
′ is a standard normal random vector on Rd. Namely,

X =

[
B
√
D 0

0 C
√
E

]
Z

which translates to

X̃ = B
√
D

Z1

...
Zk

 Ỹ = C
√
E

Zk+1

...
Zd

 .
Since Zis are independent and X̃ and Ỹ are composed of linear combinations
of disjoint sets of Zi, we conclude that they are independent.
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We can now easily establish the following result:

Proposition 15. Let Y have a normal distribution on Rd and let A be any
m× d and B any n× d matrix. Then AY and BY are independent iff they are
uncorrelated. This is the case iff ACov (Y,Y)B′ = 0.

Proof. Let

X =

[
Y
Y

]
.

It is easy to see that X is normally distributed on R2d, because for any t ∈ R2d

we can write find t1, t2 ∈ Rd so that t = [t1
′ t2
′]′. Then,

t′X =
[
t1
′ t2

′] [Y
Y

]
= t1

′Y + t2
′Y,

and since both t1
′Y and t2

′Y are normal random variables, and the sum of
two normal random variable is another normal random variable, we conclude
that X has a normal distribution. It is easy to see, by applying the relevant
definitions, that the mean vector and the covariance matrix of X are given by

µX =

[
µ
µ

]
ΣX =

[
Σ Σ
Σ Σ

]
.

Now, let

W =

[
AY
BY

]
=

[
A 0
0 B

]
X,

and note that the covariance matrix of W is given by[
A 0
0 B

] [
Σ Σ
Σ Σ

] [
A′ 0
0 B′

]
=

[
AΣA′ AΣB′

BΣA′ BΣB′

]
.

It is easy to see that since Σ is positive semi-definite, AΣA′ and BΣB′ are
positive semi-definite. Applying the previous preposition we can see that if
AΣB′ = 0, then AY and BY are independent. Also, since independent random
variables are uncorrelated we can see that

AY ⊥⊥ BY =⇒ Cov (AY, BY) = 0 =⇒ ACov (Y,Y)B′ = 0. =⇒ AΣB′ = 0.

Example 3. Let X1, . . . , Xn be independent and normally distributed, E [Xi] =
µi and Var (Xi) = σ2. Show Xn = (1/n)

∑
Xi and X− 1Xn are independent,

where 1 = (1, . . . , 1)′ and X = (X1, . . . , Xn)′ and find the distribution of X −
1Xn.

Solution. We have

Xn =
1

n
1′X
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and

X− 1Xn = (I − 1

n
11′)X. (16)

Noting that

Cov (X,X) =

σ
2

. . .

σ2

 = σ2I.

we have

1

n
1′σ2I(I − 1

n
11′) =

σ2

n
1′(I − 1

n
11′) =

σ2

n
(1′ − 1

n
1′11′) = 0.

Utilizing proposition 15 we can see that Xn and X − 1Xn are independent.
Equation (16) also shows that X − 1Xn is normally distributed since example
2 implies that X is normally distributed. Hence, noting that

µ := E
[
Xn

]
=

1

n

∑
i

µi,

we can easily find the mean vector

E
[
X− 1Xn

]
= E [X]− E

[
1Xn

]
=

µ1 − µ
...

µn − µ

 .
Also, applying (16) and the bilinearity of covariance we can find the covariance
by observing that

Cov
(
X− 1Xn,X− 1Xn

)
= (I− 1

n
11′)Cov (X,X) (I− 1

n
11′)′ = σ2(I− 1

n
11′)2.

The last equality results from I− 1
n11′ being a symmetric matrix and Cov (X,X) =

σ2I. Simplifying we can see

(I− 1

n
11′)2 = I− 1

n
11′− 1

n
11′+

1

n2
(11′)2 = I− 1

n
11′− 1

n
11′+

n

n2
11′ = I− 1

n
11′.

Ultimately,

Cov
(
X− 1Xn,X− 1Xn

)
= σ2

(
I − 1

n
11′
)
.

Proposition 16 (Conditioning). Let X be normally distributed on Rd. Let A
be any r × d matrix and B any m× d matrix, and let Y = AX and W = BX.
Assume that W has a non-singular distribution. Then there is a unique r ×m
matrix C such that

Cov (Y − CW,W) = 0,

namely,
C = Cov (Y,W) Cov (W,W)

−1
,
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and the conditional distribution of Y given W = w is normal with mean

E [Y]− C (E [W]−w)

and covariance
Cov (Y,Y)− CCov (W,W) .

Proof. By bilinearity of covariance

Cov (Y − CW,W) = 0 ⇐⇒ Cov (Y,W)− CCov (W,W) = 0

⇐⇒ CCov (W,W) = Cov (Y,W)

given that W has a non-singular distribution, the last equation is equivalent to

C = Cov (Y,W) Cov (W,W)
−1
.

Noting that

Y = (Y − CW) + CW =⇒ (Y − CW) = Y − CW

so given W = w, Y − CW is distributed like Y − Cw which is an affine
transformation of X. Hence Y given W = w is normally distributed. We can
easily see that

E [Y|W = w] = E [(Y − CW) + Cw] = E [Y]− C(E [W]−w).

Also, note that

Cov ((Y − CW) + Cw, (Y − CW) + Cw) = Cov (Y − CW,Y − CW)

Since Cw is constant almost everywhere. In addition,

Cov (Y − CW,Y − CW) = Cov (Y − CW,Y)− Cov (Y − CW,W)C ′

and since the second term on the right-hand side is zero we conclude that

Cov (Y,Y)|W=w = Cov (Y − CW,Y) = Cov (Y,Y)− CCov (W,Y) .

5 Sampling From a Distribution

Recall that if X is a random variable, then the distribution function of X
(also known as the cumulative distribution function (CDF) of X) is a map
FX : R→ [0, 1] given by FX(x) = P (X ≤ x). FX has the following properties:

Monotonicity FX is non-decreasing.

Right-continuity limy↓x FX(y) = FX(x).
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First-type Left-discontinuity FX(x−) := limy↑x FX(y) exists.

Normalization limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1.

Remark. Note the similarity between these properties and the properties of
probability measures discussed in section 1.1. Proofs are direct applications
of the corresponding properties of probability measures. Also note that non-
negativity, monotonicity, and right-continuity of FX guarantee the existence of
the Stieltjes measure associated with FX . The normalization property of FX
also establishes that this measure is a probability measure on (R,B(R)). Lastly,
note that the fact that discontinuities of FX are of the first kind results from its
monotonicity. Hence, we can conclude that monotonicity, right-continuity, and
normalization completely identify cumulative distribution functions.

We also have the following:

Proposition. If F is a distribution function, then for some 0 ≤ p ≤ 1 we have
F = pFc + (1 − p)Fd where Fc is a continuous function and Fd only increases
in jumps.

Proposition 17 (Inverse Transform Technique). Let F be a distribution func-
tion and let U be uniformly distributed on the unit interval. Define

F−1(u) = inf{x ∈ R;u ≤ F (x)}.

Then,

1. If F is a continuous function, the random variable X = F−1(U) has distri-
bution function F .

2. Let F be the distribution function of a random variable taking non-negative
integer values. The random variable X given by

X = k ⇐⇒ F (k − 1) < U ≤ F (k)

has distribution function F .

Example 4 (Stochastic Ordering). If X and Y are random variables such that

FX(x) ≤ FY (x) ⇐⇒ P (X ≤ x) ≤ P (Y ≤ x) ⇐⇒ P (X > x) > P (Y > x) ,

then we say X dominates Y stochastically and we write X ≥st Y .

Remark. Note that X and Y need not be defined on the same probability space
since the above definition is only concerned with their distribution functions.

Proposition 18. Suppose that X ≥st Y . There exists a probability space
(Ω,F ,P) and two random variables X ′ and Y ′ on this space such that:

1. X and X ′ have the same distribution.

2. Y and Y ′ have the same distribution.
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3. P (X ′ ≥ Y ′) = 1.

Proof. Take (ω,F ,P) to be ([0, 1],B([0, 1], µ) where µ is the Lebesgue measure
on R. For any distribution function F define the random variable ZF as

ZF (ω) = inf{x|ω ≤ F (x)}.

Note that
x ≤ ZF (ω) ⇐⇒ F (x) ≤ ω

therefore
P (ZF ≤ z) = P ([0, F (z)]) = F (z)

so ZF has distribution function F . Now let X ′ = ZFX and Y ′ = ZFY , and note
that

X ′(ω) = inf{x|ω ≤ FX(x)}

and since FX(x) ≤ FY (x) we have

{x|ω ≤ FX(x)} ⊆ {x|ω ≤ FY (x)}

so
X ′(ω) = inf{x|ω ≤ FX(x)} ≤ inf{x|ω ≤ FY (x)} = Y ′(ω).

Hence the event X ′ ≤ Y ′ consists of the entire sample space and, therefore, has
probability one.

6 Poisson Processes

Recall the definition of the Poisson distribution:

Definition. Let X be a random variable whose support is the set of non-
negative integers. X is said to have the Poisson distribution with parameter
λ > 0 if

P (X = k) =
λk

k!
e−λ.

We also make use of the following important property of Poisson random
variables

Proposition (Additivity of independent Poisson random variables). If X ∼
Poisson(λ), Y ∼ Poisson(µ) and X ⊥⊥ Y then X + Y ∼ Poisson(λ+ µ).
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Proof.

P (X + Y = k) =

∞∑
j=0

P (X + Y = k|Y = j)P (Y = j)

=

k∑
j=0

P (X = k − j)P (Y = j)

=

k∑
j=0

1

(k − j)!j!
µjλk−je−λ−µ

=
e−λ−µ

k!

k∑
j=0

k!

j!(k − j)!
µjλk−j

=
(λ+ µ)k

k!
e−λ−µ.

Consider a large number of independent events each having a small prob-
ability. The number of such events which actually occur has a distribution
which is close to a Poisson distribution. For instance, suppose there are n
such events X1, . . . Xn, and each event has success probability λ/n -i.e. Xi ∼
Bernoulli(λ/n). The number of total events occurring is given by S = X1 +
. . .+Xn with distribution Binomial(n, λ/n). As n grows, the distribution of S
converges point-wise to a Poisson distribution with parameter λ. The reason is

P (S = k) =

(
n

k

)(
λ

n

)k (
1− λ

n

)n−k
=
λk

k!

(
1− λ

n

)n(
1− λ

n

)−k
n(n− 1) . . . (n− k + 1)

nk
,

and we have

lim
n→∞

(
1− λ

n

)−k
= 1, lim

n→∞

n(n− 1) . . . (n− k + 1)

nk
= 1,

and,

lim
n→∞

(
1− λ

n

)n
= lim
n→∞

en ln(1− λn ) = lim
n→∞

en(− λn+o(1/n)) = e−λ

so

P (S = k)→ λk

k!
e−λ n→∞.

It is natural to ask whether a similar result holds if Xi had different success
probabilities. Say Xi are independent and Xi ∼ Bernoulli(pi) where pi are
“small.” Our goal is to find a Poisson random variable P ∼ Poisson(λ) that
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suitably approximates S. It is reasonable to expect that P ’s mean matches that
of S. This helps us determine the parameter λ:

λ = E [P ] = E [S] = p1 + . . .+ pn.

But note that in this case
Var (P ) = λ

while
Var (S) =

∑
pi(1− pi) =

∑
pi −

∑
p2
i

so we expect the quantity
∑
p2
i to be small if we are to have an accurate ap-

proximation.
In order to further analyse the notion of convergence among distributions

we need to specify an appropriate topology on the set of distributions.

Definition 4. Let F and G be the distribution functions of discrete distribu-
tions which place masses fn and gn at the points xn, for n ≥ 1, and define

dTV (F,G) =
∑
k≥1

|fk − gk|

The quantity dTV is called the total variation distance between F and G.
For random variables X and Y , we define dTV (X,Y ) = dTV (FX , FY ).

Remark. It is easy to verify that dTV is a metric on the space of distribution
functions of integer-valued random variables.

We can now give a formal result regarding our motivating remarks above:

Proposition 19. Let {Xr : 1 ≤ r ≤ n} be independent Bernoulli radnom
variables with respective parameters {pr : 1 ≤ r ≤ n}, and let S =

∑n
r=1Xr.

Then

dTV (S, P ) ≤ 2

n∑
r=1

p2
r

where P is a random variable having the Poisson distribution with parameter
λ =

∑n
r=1 pr.

Proof. Note that by the law of total probability

|P (S = k)− P (P = k) | = |P (S = k, S = P ) + P (S = k, S 6= P )

− P (P = k, S = P )− P (P = k, S 6= P ) |
= |P (S = k, S 6= P )− P (P = k, S 6= P ) |
≤ P (S = k, S 6= P ) + P (P = k, S 6= P )

so

∞∑
k=0

|P (S = k)− P (P = k) | ≤
∞∑
k=0

P (S = k, S 6= P ) +

∞∑
k=0

P (P = k, S 6= P )

≤ 2P (S 6= P ) .
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Therefore, it is enough to find a coupling between S and P that gives the
desired form to P (S 6= P ). We construct the coupling as follows. Let (Xr, Yr)
for 1 ≤ r ≤ n be a sequence of independent pairs, where the pair (Xr, Yr) takes
values in {0, 1} × {0, 1, 2, . . .} with mass function

P (Xr = x, Yr = y) =


1− pr x = y = 0

e−pr − 1 + pr x = 1, y = 0
pyr
y! e
−pr x = 1, y > 0

.

We have

1. Clearly 1 − pr ≥ 0, and pyr/y!e−pr ≥ 0 also note that f : R → R defined
by f(x) = e−x − 1 + x is non-decreasing for x ≥ 0 and f(0) = 0 so
e−pr − 1 + pr ≥ 0.

2.

1− pr + e−pr − 1 + pr +

∞∑
y=1

pyr
y!
e−pr = e−pr + e−pr (epr − 1) = 1.

3. Xr ∼ Bernoulli(pr).

4. Yr ∼ Poisson(pr).

The first two points establish that the given function is indeed a legitimate
probability mass function. Now we can let

S =

n∑
r=1

Xr P =

n∑
r=1

Yr.

By additivity of independent Poisson random variables Y has a Poisson distri-
bution with parameter λ =

∑n
r=1 pr. We have

P (S 6= P ) ≤ P

(
n⋃
r=1

{Xr 6= Yr}

)
≤

n∑
r=1

P (Xr 6= Yr)

≤
n∑
r=1

(
e−pr − 1 + pr + P (Yr ≥ 2)

)
≤

n∑
r=1

pr(1− e−pr ) ≤
n∑
r=1

p2
r.

Definition 5 (Poisson Process). A Poisson process with intensity λ is a process
N = {N(t) : t ≥ 0} taking values in S = {0, 1, 2, . . .} such that:

1. N(0) = 0; if s < t then N(s) ≤ N(t).
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2.

P (N(t+ h) = n+m|N(t) = n) =


λh+ o(h) m = 1

o(h) m > 1

1− λh m = 0

.

3. If s < t the number N(t) − N(s) of emissions in the interval (s, t] is
independent of the times if emission in [0, s] and has a distribution that
only depends on t− s.

Proposition 20. N(t) has the Poisson distribution with parameter λt; that is
to say,

P (N(t) = j) =
(λt)j

j!
e−λt

Proof. Let pj(t) = P (N(t) = j). By conditioning on P (N(t) = 0) to see that

p0(t+ h) = (1− λh+ o(h))p0(t) =⇒ p0(t+ h)− p0(t)

h
= −λp0(t) +

o(h)

h
p0(t)

taking the limit as h→ 0
p′0(t) = −λp0(t)

we also have p0(0) = 1 so we can conclude

p0(t) = e−λt

which is consistent with the proposition. Assuming, for induction, that the
proposition holds up to j − 1 we can see that

pj(t+ h) = P (N(t+ h) = j) =

j∑
k=0

P (N(t+ h) = j|N(t) = k)P (N(t) = k)

= pj(t)(1− λh+ o(h)) + pj−1(t)(λh+ o(h)) + o(h).

Or equivalently

pj(t+ h)− pj(t)
h

= −λpj(t) + λpj−1(t) +
o(h)

h

when h→ 0 we get

p′j(t) = −λpj(t) + λpj−1(t) pj(0) = 0.

Hence,

pj(t) =

∫ t

0

λpj−1(τ)eλ(τ−t)dτ

using our induction hypothesis

pj(t) =
λje−λt

(j − 1)!

∫ t

0

τ j−1dτ =
(λt)j

j!
e−λt.
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Remark (Alternative Formulation of a Poisson Process). Let T0, T1, . . . be
given by

T0 = 0, Tn = inf{t : N(t) = n}.

Then Tn is the time of the nth arrival. The inter-arrival times are random
variables X1, X2, . . . given by

Xn = Tn − Tn−1.

From knowledge of N we can find the values of X1, X2, . . . from above. Con-
versely, we can reconstruct N from the knowledge of the Xi by

Tn =

n∑
i=1

Ki, N(t) = max{n : Tn ≤ t}.

Proposition 21. The random variables X1, X2, . . . are independent, each hav-
ing the exponential distribution with mean 1/λ.

Proof. First consider X1 = T1 − T0 = T1. This means that

P (X1 > t) = P (T1 > t) = P (N(t) = 0) = e−λt.

so
FX1(t) = P (X1 ≤ t) = 1− P (X1 > t) = 1− e−λt;

that is, X1 is distributed as claimed. Now, suppose we know Xi = ti for
1 ≤ i < n. We have

P (Xn > t|X1 = t1, . . . , Xn−1 = tn−1) =

P

(
N(

n−1∑
i=1

ti + t)−N(

n−1∑
i=1

ti) = 0|X1 = t1, . . . , Xn−1 = tn−1

)
;

that is, the conditional probability of the n-th inter-arrival time being greater
than t is the same as the conditional probability of no arrival in in the interval(

n−1∑
i=1

ti,

n−1∑
i=1

ti + t

]
,

given the first n − 1 inter-arrival times. By the third defining property of the
Poisson process, this event is independent of all previous arrivals and has a
distribution that only depends on the length of the interval - t. Hence, we have

P (Xn > t|X1 = t1, . . . , Xn−1 = tn−1) = e−λt.

and similar to the n = 1 case we can conclude that Xn is exponentially distri-
bution with mean 1/λ.
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Based on the properties of the Poisson process, if we take A =
⋃n
i=1(ai, bi]

where (ai, bi] are disjoint we can see that the number of arrivals in A has a
Poisson distribution with parameter

n∑
i=1

λ(bi − ai) = λ

n∑
i=1

(bi − ai) =

∫
A

λdµ

where µ is the Lebesgue measure on R. This result can be extended to any
Borel set A. Moreover, the number of arrivals for disjoint sets are independent.
This motivates the following definition.

Definition 6. Let d ≥ 1 and let λ : Rd → R be a non-negative measurable
function such that

Λ(A) =

∫
A

λ(x)dx <∞

for all bounded sets A ∈ B(Rd). The random countable subset Π of Rd is called
a non-homogeneous Poisson process with intensity function λ if for all
A ∈ B(Rd), the random variables N(A) = |Π ∩A| satisfy

1. N(A) has the Poisson distribution with parameter Λ(A), and

2. If A1, . . . , An are disjoint sets in B(Rd), then N(A1), . . . , N(An) are inde-
pendent random variables. We call the function Λ(A) for A ∈ B(Rd), the
mean measure of the process Π.

Proposition 22 (Superposition Theorem). Let Π′ and Π′′ be independent Pois-
son processes on Rd with respective intensities λ′ and λ′′. The set Π = Π′ ∪Π′′

is a Poisson process with intensity function λ = λ′ + λ′′.

Proposition 23 (Mapping Theorem). Let Π be a non-homogeneous Poisson
process on Rd with intensity function λ, and let f : Rd → Rs be such that

Λ
(
f−1(y)

)
= 0, for all y ∈ Rs.

Assume further that

µ(B) = Λ
(
f−1(y)

)
=

∫
f−1B

λ(x)dx <∞, for all bounded B ∈ B(Rd).

Then f(Π) is a non-homogeneous Poisson process on Rs with mean measure µ.

Proposition 24 (Conditional Property). Let Π be a non-homogeneous Poisson
process on Rd with intensity function λ and let A be a subset of Rd such that
0 < Λ(A) <∞. Conditional on the event that |Π∩A| = n, then n points of the
process lying in A have the same distribution as n points chosen independently
at random in A according to the common probability measure

Q(B) =
Λ(B)

Λ(A)
, B ⊆ A.
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The corresponding density function is λ(x)/Λ(A) for x ∈ A, since

Q(B) =

∫
B

λ(x)

Λ(A)
dx.

When Π has constant intensity λ the theorem implies that, given |Π ∩ A| = n,
the n points in question are distributed uniformly and independently at random
in A.

Proof. Let A1, . . . , Ak be a partition of A. It is easy to see that for n1+. . .+nk =
n, we have

P (N(A1) = n1, . . . , N(Ak) = nk|N(A) = n) =

∏k
i=1 P (N(Ai) = ni)

P (N(A) = n)

but we have

k∏
i=1

P (N(Ai) = ni) =

k∏
i=1

Λ(Ai)
ni

ni!
e−Λ(Ai) =

e−Λ(Ai)−...−Λ(Ak)

n1! . . . nk!

k∏
i=1

Λ(Ai)
ni

=
e−Λ(A)

n1! . . . nk!

k∏
i=1

Λ(Ai)
ni .

On the other hand

P (N(A) = n) =
e−Λ(A)

n!
Λ(A)n.

Combinig these results and noting that n1 + . . .+ nk = n we get

∴ P (N(A1) = n1, . . . , N(Ak) = nk|N(A) = n) =
n!

n1! . . . nk!

k∏
i=1

(
Λ(Ai)

Λ(A)

)ni
which matches the claimed distribution.

Proposition 25 (Coloring Theorem). Let Π be a non-homogeneous Poisson
process on Rd with intensity function λ. We color the points of Π in the fol-
lowing way. A point of Π at position x is colored green with probability γ(x);
otherwise it is colored scarlet (with probability σ(x) = 1 − γ(x)). Points are
colored independently of one another. Let Γ and Σ be the sets of points colored
green and scarlet respectively. Then Γ and Σ are independent Poisson processes
with respective intensity functions γ(x)λ(x) and σ(x)λ(x).

Proof. Add proof.

Proposition 26 (Rényi’s Theorem). Let Π be a random countable subset of
Rd, and let λ : Rd → R be a non-negative integrable function satisfying

Λ(A) =

∫
A

λ(x)dx <∞
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for all bounded Borel sets A. If

P (Π ∩A = ∅) = e−Λ(A)

for any infinite union A of boxes, then Π is Poisson process with intensity
function λ.

7 Generating Functions

Definition 7. Suppose X is a random variable that takes values in {0, 1, . . .}
with probability mass function f . The probability generating function of
the random variable X is given by

G(s) = E
[
sX
]

=

∞∑
i=0

siP (X = i) =

∞∑
i=0

sif(i).

Remark. By comparing against a geometric series we can see that G always
converges on [0, 1]. The region of convergence might be bigger depending on f .

Remark. We write GX instead of G if we want to emphasize the role of X.

Example 5. The probability generating functions of some elementary discrete
distributions are as follows

Constant If P (X = c) = 1 then GX(s) = sc.

Bernoulli If P (X = 1) = p and P (X = 0) = 1− p then GX(s) = 1− p+ ps.

Geometric If P (X = k) = (1− p)k−1p for some 0 < p < 1 and any k ≥ 1 then

GX(s) =

∞∑
k=1

(1− p)k−1psk = ps

∞∑
k=1

(s(1− p))k−1 =
ps

1− s(1− p)
.

Poisson If X has the Poisson distribution with parameter λ then

GX(s) =

∞∑
k=1

λk

k!
e−λske−λ

∞∑
k=1

(λs)k

k!
= eλ(s−1).

Proposition 27. If X has a generating function G(s) then

1. E [X] = G′(1), and more generally

2. E [X(X − 1) . . . (X − k + 1)] = G(k)(1).

Proof. Suppose X has probability mass function f then

G(k)(s) =

∞∑
i=0

i(i− 1) . . . (i− k + 1)si−kf(i)
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and s = 1 we get

G(k)(1) =

∞∑
i=0

i(i− 1) . . . (i− k + 1)f(i) = E [X(X − 1) . . . (X − k + 1)] .

Definition 8 (Moment Generating Function). If we are more interested in the
moments of X then its moment generating function MX(t) := GX(et) can be
more convenient

MX(t) =

∞∑
k=0

etkP (X = k)

=

∞∑
k=0

∞∑
n=0

(tk)n

n!
P (X = k)

=

∞∑
n=0

tn

n!

( ∞∑
k=0

knP (X = k)

)

=

∞∑
n=0

tn

n!
E [Xn] .

Remark. Note that if X has an infinite moment, MX will be infinite.

Proposition 28. If X and Y are independent then GX+Y (s) = GX(s)GY (s).

Proof.

GX+Y (s) =

∞∑
i=0

P (X + Y = i) si =

∞∑
i=0

 ∞∑
j=0

P (X = i− j)P (Y = j)

 si

we recognize that the coefficient of the i-th term in the above series is identical
to the coefficient of the i-th term in the Cauchy product GX(s)GY (s). Hence
the two series are term-by-term equal.

Example 6 (Binomial Distribution). Let X1, . . . , Xn be independent Bernoulli
variables with parameter p, and let S = X1 + . . .+Xn. Each Xi has generating
function GX(s) = q+ps, where q = 1−p. Applying the above theorem n times,
we can find the generating function of the Binomial(n, p) random variable S:

GS(s) = GX(s)n = (q + ps)n.

Proposition 29. Let {Xi; i ∈ Z≥0} be a sequence of i.i.d. random variables
with a common generating function GX(s), and let N ≥ 0 be random vari-
able which is independent of theXi with generating function GN . The random
variable S = X1 + . . .+XN has a generating function given by

GS(s) = GN (GX(s)).
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Proof.

GS(s) = E
[
sS
]

= E
[
E
[
sS |N

]]
= E

[
GX(s)N

]
= GN (GX(s)).

Example 7. A hen lays N eggs, where N is Poisson distributed with parameter
λ. Each egg hatches with probability p, independently of all other eggs. Let K
be the number of chicks. Then K = X1 + . . .+XN where Xis are independent
Bernoulli variables with parameter p. How is K distributed?

Clearly
GN (s) = eλ(s−1) GX(s) = q + ps

and so

GK(s) = GN (GX(s)) = eλ(q+ps−1) = eλ(1−p+ps−1) = epλ(s−1).

We conclude that K ∼ Poisson(pλ).

Definition 9. The joint probability generating function of variables X1

and X2 taking non-negative integral values is defined by

GX1,X2(s1, s2) = E
[
sX1

1 sX2
2

]
=

∞∑
i=0

∞∑
j=0

P (X1 = i,X2 = j) si1s
j
2.

Proposition 30. Random variables X1 and X2 are independent if and only if

GX1,X2(s1, s2) = GX1(s1)GX2(s2)

for all s1, s2.

Proof. Clearly, if X1 and X2 are independent sX1
1 and sX2

2 are independent for
all s1, s2 so

GX1,X2
(s1, s2) = E

[
sX1

1 sX2
2

]
= E

[
sX1

1

]
E
[
sX2

2

]
= GX1

(s1)GX2
(s2).

Now assume that GX1,X2
(s1, s2) = GX1

(s1)GX2
(s2). We have

GX1,X2
(s1, s2) = E

[
sX1

1 sX2
2

]
=

∞∑
i=0

∞∑
j=0

P (X1 = i,X2 = j) si1s
j
2

and the term si1s
j
2 appears on the RHS only once with the coefficient P (X1 = i)P (X2 = j).

Equating the coefficients implies that the joint probability factorizes to a prod-
uct of marginal probabilities, i.e. that X1 and X2 are independent.

We now consider two important applications of generating functions.
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7.1 Random Walk

Suppose X1, X2, . . . are independent random variables each taking value 1 with
probability p and −1 with probability 1 − p. We write Sn =

∑n
i=1Xi; the

sequence S = {Si; i ≥ 0} is a simple random walk starting at the origin.
Imagine a particle at the origin at time t = 0. At each time step, the particle
moves one unit to the right with probability p or moves one unit to the left with
probability 1− p. The random variable Xt can be thought of as indicating the
position of the particle at time t.

Let p0(n) = P (Sn = 0) be the probability of being at the origin after n
steps, and let f0(n) = P (S1 6= 0, . . . , Sn−1 6= 0, Sn = 0) be the probability that
the first return occurs after n steps. Then consider

P0(s) =
∞∑
n=0

p0(n)sn, F0(s) =

∞∑
n=0

f0(n)sn.

F0 is the probability generating function of the random time T0 until the particle
makes its first return to the origin. That is, F0(s) = E

[
sT0
]
. Note that T0 may

be defective, and so it may be the case that

F0(1) = P (T0 <∞) < 1.

Proposition 31.

1. P0(s) = 1 + P0(s)F0(s).

2. P0(s) = (1− 4pqs2)−1/2.

3. F0(s) = 1− (1− 4pqs2)1/2.

Proof.

1. Clearly p0(0) = 1. For n > 1 we can express p0(n) in terms of the p0 of
smaller numbers by conditioning on f0,

p0(n) =

n∑
k=0

f0(k)p0(n− k) (f0(0) := 0).

This allows us to write

P0(s) =

∞∑
n=0

p0(n)sn = 1 +

∞∑
n=1

n∑
k=0

f0(k)p0(n− k)sn.

Recognizing the convolution, we can conclude that

P0(s) = 1 + P0(s)F0(s).
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2. To be at the origin after n steps we must take an equal number of steps
to the left and to the right. Hence,

p0(n) =

{
0 n ≡ 1 (mod 2)(
n
n
2

)
(pq)

n
2 n ≡ 0 (mod 2)

.

So we have

P0(s) =

∞∑
n=0

(
2n

n

)
(pq)ns2n =

∞∑
n=0

(
− 1

2

n

)
(−4pqs2)n = (1− 4pqs2)n.

Above we have used the identity(
− 1

2

n

)
=

(−1)n

2n
×1× 3× . . .× (2n− 1)

n!
=

(−1)n

22n
× (2n)!

n!n!
=

(
−1

4

)n(
2n

n

)
.

3. This follows immediately from the previous parts.

Corollary 1.

1. The probability that the particle ever returns to the origin is

∞∑
n=1

f0(n) = F0(1) = 1− (1− 4pq)1/2 = 1− |p− q|.

2. If eventual return is certain, that is F0(1) = 1 and p = 1/2, then the
expected time to the first return is

∞∑
n=1

nf0(n) = F ′0(1) =∞.

We call the process persistent (or recurrent) if eventual return to the
origin is (almost) certain; otherwise it is called transient. It is immedi-
ately obvious from (1) that the process is persistent if and only if p = 1/2.

Define fr(n) = P (S1 6= r, . . . , Sn−1 6= r, Sn = r) to be the probability that
the first visit to point r occurs at the n-th step, with generating function

Fr(s) =

∞∑
n=1

fr(n)sn.

Proposition 32.

1. Fr(s) = [F1(s)]r for r ≥ 1.
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2. F1(s) =
[
1− (1− 4pqs2)1/2

]
/(2qs).

Proof.

1. Note that for r ≥ 1 the only way we can get to r is to first get to r − 1,
so noting temporal and spatial homogeneity we can condition on the first
time we get to r − 1; i.e. fr−1:

fr(n) =

n∑
k=0

fr−1(k)f1(n− k).

So fr is the convolution of fr−1 and f1, and therefore Fr(s) = Fr−1(s)F1(s).
Hence, Fr(s) = F1(s)r.

2. We employ first-step analysis:

f1(n) = p× 0 + qf2(n− 1) n ≥ 2

Also, f1(1) = 1 so we have

F1(s) =

∞∑
n=1

f1(n)sn = ps+ qs

∞∑
n=2

f2(n− 1)sn−1 = ps+ qsF2(s).

Using part 1 we get

F1(s) = ps+ qsF1(s)2 =⇒ qsF1(s)2 − F1(s) + ps = 0

hence

F1(s) =
1±

(
1− 4pqs2

)1/2
2qs

=
1±

(
1− 2pqs2 + o(s2)

)1/2
2qs

.

Now as s→ 0 the limit of F1(s) must exist, and this is only the case if we
have

F1(s) =
1−

(
1− 4pqs2

)1/2
2qs

.

Corollary 2. The probability that the walk ever visits the positive part of the
real axis,

F1(1) =
1− (1− 4pq)

1/2

2q
=

1− |p− q|
2q

= min{1, p
q
}.
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7.2 Branching Processes

Suppose that a population evolves in generations, and let Zn be the number
of members of the n-th generation. Each member of the n-th generation gives
birth to a family, possibly empty, of members of the (n+ 1)-th generation; the
size of the family is a random variable. We shall make the following assumptions
about the family sizes:

1. the family sizes of the individuals of the branching process form a collection
of independent random variables;

2. all family sizes have the same probability mass function f and a generating
function G.

We are interested in the random sequence Z0, Z1, . . . of generation sizes. Let
Gn(s) = E

[
XZn

]
.

Proposition 33. It is the case that Gm+n(s) = Gm(Gn(s)) = Gn(Gm(s)), and
thus Gn(s) = G(G(G(. . . (G(s)) . . .))) is the n-fold iterate of G.

Proof. The population of generation n + 1 can be obtained by summing Nn
random variables each of which having generating function G. On the other
hand, Nn is the population of the n-th generation that has generating function
Gn. Hence, by proposition 29 we have Gn+1 = Gn ◦G. Assuming that the first
generation had population one; i.e. G1 = G we can easily see

Gn = G ◦G ◦ . . . ◦G︸ ︷︷ ︸
n times

.

Proposition 34. Let µ = E [Z1] and σ2 = Var (Z1). Then

E [Zn] = µn Var (Zn) =

{
nσ2 µ = 1,
σ2(µn−1)µn−1

µ−1 µ 6= 1.

Proof. When n = 1 the proposition holds by definition of µ and σ2. Assume,
for induction, that the proposition holds up to n. By proposition 8 we have

Gn+1(s) = G(Gn(s))

now
E [Zn+1] = G′n+1(1) = G′n(1)G′(Gn(1)) = µnG′(1) = µn+1.

Also,

Var (Zn+1) = E
[
Z2
n+1

]
− E [Zn+1]

2
= G′′n+1(1) +G′n+1(1)−G′n+1(1)2, (17)

and

G′′n+1(s) = (G′n(s)G′(Gn(s)))′ = G′′n(s)G′(Gn(s)) +G′n(s)2G′′(Gn(s))
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so

G′′n+1(1) = G′′n(1)G′(Gn(1)) +G′n(1)2G′′(Gn(1)) = G′′n(1)µn + µ2n(σ2 − µ+ µ2)

substituting in (17) and using the induction hypothesis we conclude the induc-
tive step.

Example 8 (Geometric Branching). Suppose that each family size has the mass
function f(k) = qpk, for k ≥ 0, where q = 1− p. Then

G(s) =

∞∑
k=0

qpksk = q(1− ps)−1,

and each family size is one member less than a geometric variable. Using propo-
sition and induction we can see that Gn(s) has the form

Gn(s) =
a0(n) + a1(n)s

b0(n) + b1(n)s

where 
a0(n)
a1(n)
b0(n)
b1(n)


︸ ︷︷ ︸

xn

=


0 0 q 0
0 0 0 q
−p 0 1 0
0 −p 0 1


︸ ︷︷ ︸

A


a0(n)
a1(n)
b0(n)
b1(n)


︸ ︷︷ ︸
xn−1

.

Solving this linear recurrence we get

Gn(s) =

{
n−(n−1)s
n+1−ns p = q = 1

2
q[pn−qn−ps(pn−1−qn−1)]
pn+1−qn+1−ps(pn−qn) p 6= q.

This allows us to compute

P (Zn = 0) = Gn(0) =

{
n
n+1 p = q
q(pn−qn)
pn+1−qn+1 p 6= q.

so as n→∞

P (Zn = 0)→ P (ultimate extinction) =

{
1 p ≤ q
q/p p > q.

Note that the expected family size is p/q.

Proposition 35. As n→∞,

P (Zn = 0)→ P (ultimate extinction) := η,

where η is the smallest non-negative root of the equation G(s) = s. Also, η = 1
if µ < 1, and η < 1 if µ > 1. If µ = 1 then η = 1 so long as the family-size
distribution has strictly positive variance.
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1

1 G(x)

(a) µ > 1

.

1

1 G(x)

(b) µ ≤ 1

.

Figure 1: Extinction Probabilities of a Branching Process

Proof. Note that
P (Zn = 0) = Gn(0) = G(Gn−1(0)).

also the sequence {Gn(0)} is bounded above by 1 and is monotonic since G is
increasing. Hence, since G is continuous over its region of convergence, the limit
satisfies

η = G(η).

Now assume for some ϕ ≥ 0 we have ϕ = G(ϕ). Note that since G is increasing
we must have

G1(0) = G(0) ≤ ϕ

also,
Gk(0) ≤ ϕ =⇒ G(Gk(0)) ≤ G(ϕ) =⇒ Gk+1(0) ≤ ϕ.

So the limit of the sequence {Gn(0)}, the probability of extinction, has to be
the smallest non-negative root of G(s) = s.

Now note that

G′′(s) = E
[
Z1(Z1 − 1)sZ1−2

]
≥ 0 if s ≥ 0.

So G is convex on [0, 1] with G(1) = 1. Using mean value theorem we can
conclude that G(s) = s has at most two roots if G′′(s) 6= 0. These intersections
coincide if µ = G′(1) ≤ 1. If µ > 1 the intersections are distinct. Figure 1
illustrates the situation.

7.3 Characteristic Functions

Recall

Definition 10. The moment generating function of the random variable
X is defined to be the function M : R→ [0,∞) given by M(t) = E

[
etX
]
.

If M(t) <∞ on some open interval containing the origin then:
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1. E
[
Xk
]

= M (k)(0);

2. M(t) =
∑∞
k=0

E[Xk]
k! tk;

3. if X and Y are independent then MX+Y (t) = MX(t)MY (t).

Notice that the moment generating function of X might be infinite for certain
values of t. To remedy this potential flaw we define the characteristic function
of X:

Definition 11. The characteristic function of a random variable X is the
function φ : R→ C given by φ(t) = E

[
eitX

]
where i =

√
−1.

Proposition 36. The characteristic function φ satisfies:

1. φ(0) = 1, |φ(t)| ≤ 1 for all t ∈ R.

2. φ is uniformly continuous on R.

3. φ is non-negative definite, which is to say that∑
j,k

φ(tj − tk)zj z̄k ≥ 0

for all real t1, . . . , tn and complex z1, . . . , zn.

Proof. 1. By definition

φ(0) = E
[
ei0X

]
= E [1] = 1.

Also,

|φ(t)| =
∣∣E [eitX]∣∣ =

∣∣∣∣∫
R
i sin(tx) + cos(tx)dFX(x)

∣∣∣∣
≤
∫
R
|i sin(tx) + cos(tx)| dFX(x)

≤
∫
R

1dFX(x) = 1.

2.
|φ(t1)− φ(t2)| =

∣∣∣E [eit1X(1− ei(t2−t1)X)
]∣∣∣ ≤ E

[∣∣∣1− ei(t2−t1)X
∣∣∣]

and as t2 → t1 we can see that the right-hand side approaches zero. Hence,
given any x, y ∈ R and ε > 0 we can pick δ > 0 so that

E
[∣∣1− eiδX ∣∣] < ε

which establishes
|φ(x)− φ(y)| < ε.
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3. We have that

∑
j,k

φ(tj − tk)zj z̄k = E


∣∣∣∣∣∣
∑
j

zj exp(itjX)

∣∣∣∣∣∣
2
 ≥ 0

Proposition 36 characterizes the characteristic functions in the sense that φ
is a characteristic function if and only if it satisfies all three conditions above.
This result is called Bochner’s theorem.

We also have the following

1. If φ(k)(0) exists then

{
E
[
|Xk|

]
<∞ k ≡ 0 (mod 2)

E
[
|Xk−1|

]
<∞ k ≡ 1 (mod 2)

2. If E
[
|Xk|

]
<∞ then

φ(t) =

k∑
j=0

E
[
Xj
]

j!
(it)j + o(tk),

and so φ(k)(0) = ikE
[
Xk
]
.

Proposition 37. If X and Y are independent then φX+Y (t) = φX(t)φY (t).

Proof.

φX+Y (t) = E
[
ei(X+Y )t

]
= E

[
eiXteiY t

]
= E

[
eiXt

]
E
[
eiY t

]
= φX(t)φY (t).

Proposition 38. If a, b ∈ R and Y = aX + b then φY (t) = eitbφX(at).

Proof.

φY (t) = E
[
ei(aX+b)t

]
= E

[
eibteiaXt

]
= eibtE

[
eiaXt

]
= eibtφX(at).

Definition 12. The joint characteristic function of X and Y is the function
φX,Y : R2 → R given by φX,Y (s, t) = E

[
eisXeitY

]
.

Proposition 39. Random variables X and Y are independent if and only if
φX,Y (s, t) = φX(s)φY (t) for all s and t.

Proposition 40. Random variable X and Y have the same characteristic func-
tion if and only if they have the same distribution function.
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Remark. The last two propositions imply the Cramer-Wold device. Let

t =


t1
t2
...
tn

 X =


X1

X2

...
Xn


now

E [t′X] = φt1X1+...+tnXn(1) = E
[
et1X1+...+tnXn

]
= E

[
et1X1 . . . etnXn

]
= φX(t).

Hence, knowing the mean of t′X for all t is equivalent to knowing the charac-
teristic function of X and, therefore, the distribution of X.

Example 9.

1. Exponential Distribution. If f(x) = λe−λx for x ≥ 0 then

φ(t) = E
[
eitX

]
=

∫ ∞
0

eitxλe−λxdx =
λ

λ− it
.

2. Normal Distribution. If X is N(0, 1) then

φ(t) = E
[
eitX

]
=

∫ ∞
−∞

1√
2π

exp(itx− 1

2
x2)dx

=

∫ ∞
−∞

1√
2π

exp(−1

2
(x2 − 2itx− t2)− 1

2
t2)dx

= exp(−1

2
t2)

∫ ∞
−∞

1√
2π

exp(−1

2
(x− it)2)dx

= exp(−1

2
t2).

So φ(t) = et
2/2. Then for Y = σX + µ, the characteristic function is:

φY (t) = eitµφX(σt) = exp(iµt− 1

2
σ2t2).

3. Multivariate Normal Distribution. Let X ∼ N (µ,Σ) and x′ = [x1 . . . xn].
We have

φX(x) = E
[
eiX1x1 . . . eiXnxn

]
= E

[
ei(x1X1+...+xnXn)

]
= E

[
ei(x

′X)
]

= φx′X(1)

but x′X ∼ N (x′µ,x′Σx) so

φX(x) = exp(ix′µ− 1

2
x′Σx).
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Definition 13. We say the sequence F1, F2, . . . of distribution functions con-
verges to the distribution function F , written Fn → F , if F (x) = limn→∞ Fn(x)
at each point x where F is continuous.

Proposition 41 (Lévy’s Continuity Theorem). Suppose {Fn} is a sequence of
distribution functions with corresponding characteristic functions {φn}.

1. If Fn → F for some distribution F with characteristic function φ, then
φn(t)→ φ(t) for all t.

2. Conversely, if φ(t) = limn→∞ φn(t) exists and is continuous at t = 0, then
phi is the characteristic function of some distribution function F , and Fn →
F .

Definition 14 (Convergence in Distribution). If {Xn} is a sequence of random
variables with respective distribution functions {Fn} we say that Xn converges

in distribution to X, written Xn
D−→ X, if Fn → F as n→∞, where F is the

distribution function of X.

8 Limit Theorems

8.1 A First Attempt at Law of Large Numbers

Proposition 42 (A Law of Large Numbers). If {Xn} is a sequence of i.i.d.
random variables with finite mean µ, their partial sums Sn = X1 + . . . + Xn

satisfy
1

n
Sn

D−→ µ.

Proof. Consider the characteristic function

φSn/n(t) = φSn(t/n) = φX1
(t/n)n.

Since µ = E [X1] is finite we can write

φX1
(t/n) =

(
1 +

itµ

n
+ o(

t

n
)

)
so

φSn/n(t) =

(
1 +

itµ

n
+ o(

t

n
)

)n
which approaches exp(itµ), the characteristic function of the constant random
variable µ, as n→∞.

Proposition 43 (Central Limit Theorem). Let {Xn} be a sequence of i.i.d.
random variables with finite mean µ and finite non-zero variance σ2, and let
Sn = X1 + . . .+Xn. Then

Sn − nµ√
nσ2

D−→ N (0, 1) as n→∞.
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Proof. Let Yi = Xi−µ√
σ2

so that

Sn − nµ√
nσ2

=
1√
n

n∑
i=1

Yi.

so the characteristic function of the distribution in question is given by

φn(t) = φY1
(
t√
n

)n.

Note that E [Yi] = 0 and Var (Yi) = 1 so we can write

φYi(t) = 1− t2

2
+ o(t2)

hence,

φn(t) =

(
1− t2

2n
+ o(

t2

n
)

)n
and we get φn(t) → exp(−t2/2) as n → ∞ which is the characteristic function
of the standard normal distribution.

9 Inequalities

Proposition 44 (Markov’s Inequality). Let X be a random variable, and let g
be a non-negative Borel-measurable function such that E [g(X)] < ∞. Suppose
that g is even and non-decreasing on [0,∞). Then, for every ε > 0,

P (|X| ≥ ε) ≤ E [g(X)]

g(ε)
.

Proof. Let
Y = g(ε)1{|X| ≥ ε}.

Note that our assumptions on imply that g(X) ≥ Y , so

E [g(X)] ≥ E [Y ] = E [g(ε)1{|X| ≥ ε}] = g(ε)E [1{|X| ≥ ε}] = g(ε)P (|X| ≥ ε) .

Proposition 45. Let X ≥ 0 a.s. and let F be its distribution function. Then

E [X] <∞ ⇐⇒
∫ ∞

0

[1− F (x)]dx <∞.

In this case the following relation holds:

E [X] =

∫ ∞
0

P (X > x) dx =

∫ ∞
0

[1− F (x)]dx.
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Proof.∫ ∞
0

P (X > x) dx =

∫ ∞
0

E
[
1{X>x}

]
dx = E

[∫ ∞
0

1{X>x}dx

]
= E [X] .

Corollary 3. Let X be a random variable, and let 0 < p <∞, then

E [|X|p] =

∫ ∞
0

P (|X|p ≥ x) dx

letting x = up we get

E [|X|p] =

∫ ∞
0

P (|X|p ≥ up) pup−1du = p

∫ ∞
0

xp−1P (|X| ≥ x) dx

Proposition 46 (Jensen’s Inequality). Suppose φ is convex, that is,

λφ(x) + (1− λ)φ(y) ≥ φ(λx+ (1− λ)y)

for all λ ∈ (0, 1) and x, y ∈ R. Suppose X and φ(X) have finite expectations,
then

φ(E [X]) ≤ E [φ(X)] .

Proof. Since φ is convex, it is differentiable. Consider the line touching the
graph of φ at E [X],

l(x) = φ(E [X]) + (x− E [X])m

Due to convexity we must have l(x) ≤ φ(x) hence,

E [l(x)] ≤ E [φ(X)] =⇒ E [φ(E [X])] +mE [x− E [X]] ≤ E [φ(X)]

∴ φ(E [X]) ≤ E [φ(X)] .

Proposition 47 (Young’s Inequality). Let g : R→ R be a differentiable, strictly
increasing function such that g(0) = 0, then for all a, b > 0

ab ≤
∫ a

0

g(x)dx+

∫ b

0

g−1(x)dx.

Proof. Let

G(a) = ab−
∫ a

0

g(x)dx

we have
G′(a) = b− g(a)
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a

b

∫ a
0
g(x)dx

∫ b
0
g−1(x)dx

g(x)

Figure 2: Graphical Illustration of Young’s Inequality

and since g is strictly increasing using the first derivative test we can see that
G attains its maximum at a = g−1(b). Now

G(g−1(b)) = g−1(b)b−
∫ g−1(b)

0

g(x)dx.

Using the substitution x = g−1(u) and integration by parts we get

G(g−1(b)) =

∫ b

0

g−1(x)dx

which finishes the proof. Figure 2 is illuminating as well.

Definition 15. Let ‖X‖p = (E [|X|p])1/p for 1 ≤ p < ∞, and notice ‖cX‖p =
|c|‖X‖p for any real number c.

Proposition 48 (Hölder’s Inequality). Let p, q ∈ (1,∞) so that 1/p+ 1/q = 1;
then

E [|XY |] ≤ ‖X‖q‖X‖p

Proof. If either X or Y are a.s. 0, the inequality holds. Otherwise, we can
divide both sides by ‖X‖p and ‖Y ‖q to get normalized random variables X and
Y . Consider the function g(t) = tp−1. Note that

1

p
+

1

q
= 1 ⇐⇒ (p− 1)(q − 1) = 1.

We can apply Young’s inequality to g to get

ab <

∫ a

0

tp−1dt+

∫ b

0

tq−1dt =⇒ ab <
ap

p
+
bq

q
.
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Letting a = |X|, b = |Y |, and taking expectations we get

E [|XY |] < E
[
|X|p

p

]
+ E

[
|Y |q

q

]
since X and Y are normalized on the right hand side we get

E
[
|X|p

p

]
+ E

[
|Y |q

q

]
=

1

p
+

1

q
= 1 = ‖X‖p‖Y ‖q.

Remark. The special case where p = q = 2 is known as Cauchy-Schwarz
inequality.

If 1 ≤ p < q < ∞ then if |x| ≤ 1 we have |x|−p ≤ 1 and if |x| ≥ 1 we have
|x|q−p ≥ 1. Putting these together, we can conclude that

1 ≤ |x|−p + |x|q−p =⇒ |x|p ≤ 1 + |x|q.

Therefore, if ‖X‖q is finite for some random variable X, then ‖X‖p is also finite.
A more refined result is the following:

Proposition 49 (Lyapunov’s Inequality). If 1 ≤ p < q <∞, then

‖X‖p ≤ ‖X‖q.

Proof. Consider the convex function x 7→ xq/p and the random variable |X|p.
By Jensen’s inequality

E [|X|p]q/p ≤ E
[
(|X|p)q/p

]
=⇒ ‖X‖qp ≤ ‖X‖qq =⇒ ‖X‖p ≤ ‖X‖q.

Proposition (Minkowski’s Inequality). Suppose 1 ≤ p <∞. If ‖X‖p and ‖Y ‖p
are finite, then ‖X + Y ‖p is finite, and furthermore

‖X + Y ‖p ≤ ‖X‖p‖Y ‖p.

Proof. First note that the function f(x) = xp is convex for 1 ≤<∞ on R+. So(
1

2
x+

1

2
y

)p
≤ 1

2
xp +

1

2
yp

for non-negative x and y. In particular(
1

2
|X + Y |

)p
≤
(

1

2
|X|+ 1

2
|Y |
)p
≤ 1

2
|X|p +

1

2
|Y |p

∴ |X + Y |p ≤ 2p−1(|X|p + |Y |p)
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Hence, if ‖X‖p and ‖Y ‖p are finite, ‖X + Y ‖p must be finite. Now

‖X + Y ‖pp = E [|X + Y |p] ≤ E
[
|X||X + Y |p−1

]
+ E

[
|Y ||X + Y |p−1

]
by triangle inequality. Applying Hölders inequality we have

E
[
|X||X + Y |p−1

]
≤ ‖X‖p‖(X + Y )p−1‖ p

p−1
= ‖X‖p‖X + Y ‖p−1

p

and similarly
E
[
|Y ||X + Y |p−1

]
≤ ‖Y ‖p‖X + Y ‖p−1

p .

Hence
‖X + Y ‖pp ≤ ‖X‖p‖X + Y ‖p−1

p + ‖Y ‖p‖X + Y ‖p−1
p ,

and therefore
‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p.

10 Convergence

So far we have seen various of instances of convergence in random sequences. As
illustrated in the previous sections, there are multiple useful ways of thinking
about convergence of a sequence of random variables.

Definition 16. Let X,X1, X2, . . . be random variables on some probability
space (Ω,F ,P). We say

1. Xn → X almost surely, written Xn
a.s.−−→ X, if

{ω ∈ Ω;Xn(ω)→ X(ω) as n→∞}

is an event with probability one.

2. Xn → X in r-th mean, where r ≥ 1, written Xn
r−→ X, if the r-th moment

of all Xi is finite and for all n

E [|Xn −X|r]→ 0 as n→∞.

3. Xn → X in probability, written Xn
P−→ X, if for any ε > 0 we have

P (|Xn −X| > ε)→ 0 as n→∞.

4. Xn → X in distribution, written Xn
D−→ X, if

P (Xn ≤ x)→ P (X ≤ x) as n→∞

for all x at which the function FX(x) := P (X ≤ x) is continuous.

Proposition 50. The following implications hold
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I. Xn
r−→ X implies Xn

P−→ X,

II. Xn
a.s.−−→ X implies Xn

P−→ X,

III. Xn
P−→ X implies Xn

D−→ X,

and Xn
r−→ X implies Xn

s−→ X for all r > s ≥ 1. No other implications hold in
general.

We give a proof for each implication separately.

Proposition 51. Convergence in probability implies convergence in distribu-

tion. That is, Xn
P−→ X implies Xn

D−→ X.

Proof. We have

P (Xn ≤ x) = P (Xn ≤ x,X > x+ ε) + P (Xn ≤ x,X ≤ x+ ε)

now
Xn ≤ x,X > x+ ε =⇒ Xn −X < −ε

and
{Xn −X < −ε} ⊆ {|Xn −X| > ε}

Also, clearly
{Xn ≤ x,X ≤ x+ ε} ⊆ {X ≤ x+ ε}

so
P (Xn ≤ x) ≤ P (|Xn −X| > ε) + P (X ≤ x+ ε)

therefore

lim sup
n

P (Xn ≤ x) ≤ lim sup
n

(P (|Xn −X| > ε) + P (X ≤ x+ ε))

∴ lim sup
n

P (Xn ≤ x) ≤ P (X ≤ x+ ε) (18)

Similarly

P (X ≤ x− ε) = P (X ≤ x− ε,Xn > x) + P (X ≤ x− ε,Xn ≤ X)

which implies

P (X ≤ x− ε) ≤ P (|X −Xn| < ε) + P (Xn ≤ x) .

and

lim sup
n

(P (X ≤ x− ε)− P (|Xn −X| > ε)) ≤ lim inf
n

P (Xn ≤ x)

∴ P (X ≤ x− ε) ≤ lim inf
n

P (Xn ≤ x) . (19)
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Combining (19) and (19) we get

P (X ≤ x− ε) ≤ lim inf
n

P (Xn ≤ x) ≤ lim sup
n

P (Xn ≤ x) ≤ P (X ≤ x+ ε)

for all ε > 0. Now, if FX(t) := P (X ≤ t) is continuous at x we can take ε ↓ 0
and use the fact that FX is non-decreasing to get

P (X ≤ x) ≤ lim inf
n

P (Xn ≤ x) ≤ lim sup
n

P (Xn ≤ x) ≤ P (X ≤ x) .

Remark. The converse assertion fails in general. For instance, letX,X1, X2, . . .

be i.i.d. Bernoulli(p) variables. Clearly, Xn
D−→ X, while for any ε > 0

P (|Xn −X| > ε) = P (Xn 6= X)

= P (Xn = 0, X = 1) + P (Xn = 1, X = 0) = 2p(1− p) 6→ 0.

Proposition 52. For any r > s ≥ 1 convergence in r-th mean implies conver-
gence in s-th mean, moreover, convergence in first mean implies convergence in
probability. That is,

1. If r > s ≥ 1 and Xn
r−→ X then Xn

s−→ X.

2. If Xn
1−→ X then Xn

P−→ X.

Proof. 1. In the proof of Lyapunov’s inequality, we showed that the existence
of E [|X|r] implies the existence of E [|X|s]. Also, by Lyapunov’s inequality

0 ≤ ‖Xn −X‖s ≤ ‖Xn −X‖r = E [|Xn −X|r]
1
r .

since Xn
r−→ X and g(x) = x1/r is continuous on R≥0 we can conclude that

‖Xn − X‖r → 0 and hence, by squeeze theorem, ‖Xn − X‖s → 0 which

implies Xn
s−→ X using a similar argument.

2. We can apply Markov’s inequality to the random variable Xn −X and the
function g(x) = |x|:

0 ≤ P (|Xn −X| > ε) ≤ E [|Xn −X|]
|ε|

which implies Xn
P−→ X by squeeze theorem.

Remark. The converse does not hold in general. Let U ∼ Uniform([0, 1]). Take
any 1/r < p < 1/s and define

Xn =

{
np 0 ≤ u ≤ 1/n

0 o.w.
X = 0.
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To see why the converse of 1 does not hold consider

E [|Xn −X|s] =
1

n
· nsp = nsp−1 → 0 n→∞

since sp− 1 < 0 while

E [|Xn −X|r] =
1

n
· nrp = nrp−1 →∞ n→∞

since np − 1 > 0. For an example where Xi converge to X in probability but
not in first mean let p = 1 and note that E [|Xn −X|] = 1 while

P (|Xn −X| > ε) =
1

n
→ 0 n→∞.

Proposition 53. Let An(ε) = {|Xn − X| > ε} and Bm(ε) = ∪n≥mAn(ε).
Then:

1. Xn
a.s.−−→ X if and only if P (Bm(ε))→ 0 as m→∞, for all ε > 0,

2. Xn
a.s.−−→ X if

∑
n P (An(ε)) <∞ for all ε > 0,

3. if Xn
a.s.−−→ X then Xn

P−→ X, but the converse fails in general.

Proof. 1. Let C = {ω ∈ Ω;Xn(ω) → X(ω)} and A(ε) = ∩mBm(ε). Suppose
P (C) = 1 and for any ε > 0 take ω0 ∈ A(ε) we have

ω0 ∈ A(ε) =⇒ ω0 ∈ ∩mBm(ε)

=⇒ ∀m ∈ N;∃n ≥ m;ω0 ∈ An(ε)

=⇒ ∀m ∈ N;∃n ≥ m; |Xn(ω0)−X(ω0)| > ε

=⇒ ω0 6∈ C
∴ ω0 ∈ Ω \ C.

That is, A(ε) ⊆ Ω \ C. Hence P (A(ε)) = 0. By definition of A and the
continuity from above property of the probability measure P we conclude

Bm(ε) ↓ A(ε), P (A(ε)) = 0 =⇒ P (Bm(ε)) ↓ 0.

Now assume that P (Bm(ε))→ 0 for all ε > 0 and take ω0 ∈ Ω\C this means
that Xn(ω0) 6→ X(ω0), that is, ω0 ∈ A(ε) for some ε > 0. Therefore, we have

P (Ω \ C) ≤ P

(⋃
ε

A(ε)

)
noting that A(ε) ⊇ A(ε′) for if ε ≥ ε′ we can write the left-hand side as a
countable union of As, for instance

P

(⋃
ε

A(ε)

)
= P

( ∞⋃
m=1

A(
1

m
) ∪A(m)

)
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but

P

( ∞⋃
m=1

A(
1

m
) ∪A(m)

)
≤
∞∑
m=1

(
P
(
A(

1

m
)

)
+ P (A(m))

)
= 0.

Therefore P (Ω \ C) ≤ 0 and hence P (C) = 1.

2. Using part 1 we have

P (Bm(ε)) ≤
∞∑
n=m

P (An(ε)) =

∞∑
n=1

P (An(ε))−
∞∑

n=m−1

P (An(ε))

for any ε > 0. The last expression on the right hand side is well-defined since∑∞
n=1 P (An(ε)) < ∞ and it converges to 0 from above. Hence, by squeeze

theorem, P (Bm(ε)) should converge to zero as m→∞.

3. Clearly for any ε > 0

P (Bm(ε)) ≥ P (Am(ε)) ≥ 0

so if Xn
a.s.−−→ X and, by part 1, P (Bm(ε))→ 0 by squeeze theorem we must

have P (Am(ε))→ 0 and hence Xn
P−→ X.

Remark. A counterexample for the converse of part 3 of the above theorem is
as follows. Take (Ω,F ,P) = ([0, 1],B([0, 1]), µ) where µ is the Lebesgue measure
on R. For each n ∈ N let en be the unique non-negative integer so that

2en ≤ n < 2en+1.

Define Xn : Ω→ R as

Xn(ω) =

{
1 n−2en

2en < ω < n−2en+1
2en

0 o.w.
(20)

and let X = 0. The first six Xi are depicted in figure 3. Clearly,

P (|Xn −X| > ε) = P (Xn = 1) =
1

2en

and en → ∞ as n → ∞ so Xn
P−→ X. On the other hand, for each ω ∈ Ω the

sequence {Xn(ω)} takes on 1 infinitely many times, hence

P ({ω ∈ Ω;Xn(ω)→ X(ω)}) = P (∅) = 0.

Proposition 54. If Xn
P−→ X, there exists a non-random increasing sequence

of integers {nk} so that Xnk
a.s.−−→ X as k →∞.
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Figure 3: Graphs of X1, . . . , X6 as defined in (20).

Proof. Since Xn
P−→ X, we have

P (|Xn −X| > ε)→ 0 asn→∞.

Hence, for each k ∈ N we can find nk ∈ N so that

P
(
|Xnk −X| >

1

k

)
<

1

k2
.

For any ε > 0∑
1/k<ε

P (|Xn −X| > ε) ≤
∑

1/k<ε

P
(
|Xn −X| >

1

k

)
≤ ∞

since
∑
k 1/k2 is convergent. By part 2 of proposition 53 we have Xnk

a.s.−−→
X.

Proposition 55 (Skorokhod’s Representation Theorem). If {Xn} and X, with
distribution functions {Fn} and F , are such that

Xn
D−→ X (or equivalently Fn → F ) as n→∞

then there exists a probability space (Ω′,F ′,P′) and random variables {Yn} and
Y mapping Ω′ into R, such that

1. {Yn} and Y have distribution functions {Fn} and F ,

2. Yn
a.s.−−→ Y as n→∞.

Proof. Add proof!

60



Proposition 56. If Xn
D−→ X and g : R → R is continuous, then g(Xn)

D−→
g(X).

Proof. Take (Ω′,F ′,P′) and Yn as in proposition 55, then since g is continuous
we have

Yn(ω)→ Y (ω) =⇒ g(Yn(ω))→ g(Y (ω))

hence
{ω ∈ Ω′;Yn(ω)→ Y (ω)} ⊆ {ω ∈ Ω′; g(Yn(ω))→ g(Y (ω))}

so we get

P′({ω ∈ Ω′;Yn(ω)→ Y (ω)}) = 1 =⇒ P′({ω ∈ Ω′; g(Yn(ω))→ g(Y (ω))}) = 1

and therefore g(Yn)
a.s.−−→ g(Y ) on Ω′. This implies g(Yn)

D−→ g(Y ), but Yn and

Xn as well as Y and X are identically distributed, so we must have g(Xn)
D−→

g(X).

Proposition 57. The following three statemnets are equivalent.

1. Xn
D−→ X.

2. E [g(Xn)]→ E [g(X)] for all bounded continuous functions g.

3. E [g(Xn)]→ E [g(X)] for all bounded functions g of the form g(x) = f(x)1[a,b](x)
where f is continuous on [a, b] and a and b are points of continuity of the
distribution functio of the random variable X.

Proof. Add if you can!

11 Borel-Cantelli Lemmas and the Strong Law
of Large Numbers

Given a sequence of events {An}, we can consider the probability of the following
events

lim supAn =

∞⋂
n=1

∞⋃
m=n

Am = {ω ∈ Ω;ω ∈ An for infinitely many n}

lim inf An =

∞⋃
n=1

∞⋂
m=n

Am = {ω ∈ Ω;ω ∈ An for all but finitely many n}.

The Borel-Cantelli lemmas relate the probabilities of these events to the series∑
P (An). The names lim sup and lim inf can be explained by noting that

lim sup
n

1An = 1lim supAn lim inf
n

1An = 1lim inf An

It is common to write lim supAn = {ω ∈ Ω;ω ∈ An i.o.} where i.o. stands for
infinitely often.

61



Proposition 58 (Borel-Cantelli Lemma). Given a sequence of events {An},
∞∑
n=1

P (An) <∞ =⇒ P (lim supAn) = 0.

That is, if the series
∑

P (An) converges to a real number, {An} will occur
finitely many times, almost surely.

Proof. By sub-additivity of probability measure P we have

0 ≤ P

( ∞⋃
m=n

Am

)
≤
∞∑
m=n

P (Am) .

Since the series
∑

P (An) is convergent we can write the right-hand-side as

∞∑
m=n

P (Am) =

∞∑
m=1

P (Am)−
n−1∑
m=1

P (Am)

which converges to zero as n→∞. Hence, by squeeze theorem we must have

P

( ∞⋃
m=n

Am

)
→ 0 as n→∞,

and since
∞⋃
m=n

Am ↓ lim supAn

by continuity from above of the probability measure P we have

P (lim supAn) = lim
n→∞

P

( ∞⋃
m=n

Am

)
= 0.

Remark. A shorter proof that using Fubini-Tonelli theorem is as follows: Let
N be the number of events An that occur, given by

N =

∞∑
n=1

1An .

Now consider

E [N ] = E

[ ∞∑
n=1

1An

]
=

∞∑
n=1

E [1An ] =

∞∑
n=1

P (An) <∞

where we can switch the sum and expectation using Fubini-Tonelli theorem,
noting that the sum is taken over non-negative random variables. Since N has
finite expectation, it must be finite almost surely.
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The second Borel-Cantelli lemma, provides a partial converse:

Proposition 59 (Second Borel-Cantelli Lemma). For independent events {An},

∞∑
n=1

P (An) =∞ =⇒ P (lim supAn) = 1.

Proof. Let B be the complement of lim supAn. By DeMorgan’s laws we have

B =

( ∞⋂
n=1

∞⋃
m=n

Am

)c
=

∞⋃
n=1

∞⋂
m=n

Acm.

Since the events {An} are independent,

0 ≤ P

( ∞⋂
m=n

Acm

)
=

∞∏
m=n

P (Acm) =

∞∏
m=n

(1− P (Am)).

Since 1− x ≤ e−x for all x we can conclude

∞∏
m=n

(1− P (Am)) ≤
∞∏
m=n

e−P(Am) = e−
∑
m=n∞P(Am)

which converges to zero as n→∞. Hence

P

( ∞⋂
m=n

Acm

)
→ 0.

Since
∞⋂
m=n

Acm ↑ B

by the continuity from below of the probability measure P we conclude that

P (B) = lim
n

∞⋂
m=n

Acm = 0 =⇒ P (lim supAn) = 1.

Proposition 60.

Proposition 61 (Strong Law of Large Numbers).

Example 10 (Renewal Theory).

Proposition 62.

Proposition 63 (Glivenko-Cantelli Theorem).
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12 Information Theory

Proposition 64 (Shannon’s Theorem). Let X1, X2, . . . ,∈ {1, . . . , r} be inde-
pendent with P (Xi = k) = p(k) > 0 for 1 ≤ k ≤ r. Here we are thinking of
1, . . . , r as the letters of an alphabet, and X1, X2, . . . are successive letters pro-
duced by an information source (in this i.i.d. case the proverbial monkey at a
typewriter). Let πn(ω) = p(X1(ω)) . . . p(Xn(ω)) be the probability of the realiza-
tion we observed in the first n trials. Since log πn(ω) is a sum of independent
random variables it follows from the strong law of large numbers that

−n−1 log πn
a.s.−−→ H := −

r∑
k=1

p(k) log p(k)

The constant H is called the entropy of the source and is a measure of how ran-
dom it is. The last result is known as the asymptotic equipartition property:
if ε > 0 then as n→∞

P {exp(−n(H + ε)) ≤ πn(ω) ≤ exp(−n(H − ε))} → 1.

The rest of this section is devoted to the study of entropies and related
concept. We only include discrete random variables in our analysis and adopt
the following notation: given a discrete random variable X, we use X to denote
its support and pX(x) = P (X = x) to show its probability mass function.

Definition 17. The entropy H(X) of a discrete random variable X is defined
by

H(X) = −
∑
x∈X

p(x) log p(x).

Remark. Since H(X) only depends on the distribution of X, we also write
H(p) for the above quantity. The logarithm is to the base 2 and the entropy is
expressed in “bits.” For example, the entropy of a fair coin toss is 1 bit.

Remark. We will use the convention that 0 log 0 = 0, which is easily justified
by continuity since x log x→ 0 as x→ 0.

Remark. The entropy of X can also be interpreted as the expected value of
log 1

p(X) . Thus

H(X) = E
[
log

1

p(X)

]
.

We can think of − log 1
P(()A) as the “information content” of event A. From this

perspective, entropy is the average information content of the realizations of the
random variable X.

1. The information content of an event is a decreasing

Lemma 1.
H(X) ≥ 0

and equality holds if and only if X is a constant.
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Figure 4: The binary entropy function.

Proof. 0 ≤ p(x) ≤ 1 implies − log p(x) ≥ 0. Clearly, if X = x with probability
one we get H(x) = 1 log 1 = 0. On the other hand, if H(X) = 0 we must
have p(x) log p(x) = 0 for all x ∈ X . Since by definition of X , we must have
p(x) > 0 for x ∈X , we conclude that we must have log p(x) = 0, i.e. p(x) = 1.
So X is a singleton and X is constant.

Example 11 (Binary Entropy Function). Let X ∼ Bernoulli(p), then

H(X) = −p log p− (1− p) log(1− p) := H(p).

In particular, H attains it maximum value of 1 at p = 1/2. Refer to figure, 4
for the graph of H.

Example 12. Let

X =


a with probability 1/2,

b with probability 1/4,

c with probability 1/8,

d with probability 1/8,

The entropy of X is

H(X) = −1

2
log

1

2
− 1

4
log

1

4
− 1

8
log

1

8
− 1

8
log

1

8
=

7

4
bits.

Remark. Suppose we wish to determine the value of X with the minimum
number of binary questions. An efficient first question is “Is X = a?” This
splits the probability in half. If the answer to the first question is no, then the
second question can be “Is X = b?” The third question can be “Is X = c?” The
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resulting expected number of binary questions required is 1.75. This turns out
to be the minimum expected number of binary questions required to determine
the value of X.

Definition 18. The joint entropy H(X,Y ) of a pair of discrete random vari-
ables (X,Y ) with a joint distribution p(x, y) is defined as

H(X,Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y),

which can also be expressed as

H(X,Y ) = −E [log p(X,Y )] .

Definition 19. The conditional entropyH(Y |X) of a pair of discrete random
variables (X,Y ) with a joint distribution p(x, y) is defined as

H(Y |X) =
∑
x∈X

pX(x)H(Y |X = x)

= −
∑
x∈X

pX(x)
∑
y∈Y

pY |X(y|x) log pY |X(y|x)

=
∑
x∈X

∑
y∈Y

pX,Y (x, y) log pY |X(y|x)

= −E [log p(Y |X)]

Remark. Note that H(Y |X) ≥ 0 and equality holds if and only if given X, Y
takes on a single value with probability 1. That is, there exists a function f so
that Y = f(X).

Proposition 65 (Chain Rule).

H(X,Y ) = H(X) +H(Y |X).

Proof.

H(X,Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y)

=
∑
x∈X

∑
y∈Y

p(x, y) log (p(x)p(y|x))

=
∑
x∈X

∑
y∈Y

p(x, y) log p(x) +
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x)

=
∑
x∈X

p(x) log p(x) +
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x)

= H(X) +H(Y |X).

Corollary 4.
H(X,Y |Z) = H(X|Z) +H(Y |X,Z).
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Remark. Note that H(X|Y ) 6= H(Y |X) but

H(X)−H(X|Y ) = H(Y )−H(Y |X).

Definition 20. The relative entropy or Kullback-Leibler distance be-
tween two probability mass functions p(x) and q(x) is defined as

D(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)
= Ep

[
log

p(x)

q(x)

]
.

Remark. Note that even though we use the term “distance” to refer to relative
entropy, it is not a metric on the space of probability mass functions. The reason
is that it is not symmetric, i.e. in general D(p||q) 6= D(q||p). For this reason, the
relative entropy is sometimes referred to as the Kullback-Leibler divergence.

Definition 21. Consider two random variablesX and Y with a joint probability
mass function pX,Y (x, y) and marginal probability mass functions pX(x) and
pY (y). The mutual information I(X;Y ) is the relative entropy between the

joint distribution and the product distribution pX(x)pY (y), i.e.

I(X;Y ) = D(pX,Y (x, y)||pX(x)pY (y))

=
∑
x∈X

∑
y∈Y

pX,Y (x, y) log
pX,Y (x, y)

pX(x)pY (y)

= EpX,Y (x,y)

[
log

pX,Y (x, y)

pX(x)pY (y)

]
.

Remark. We can relate mutual information to entropy as

I(X;Y ) = D(pX,Y (x, y)||pX(x)pY (y))

=
∑
x∈X

∑
y∈Y

pX,Y (x, y) log
pX,Y (x, y)

pX(x)pY (y)

=
∑
x∈X

∑
y∈Y

pX,Y (x, y) log
pX|Y (x|y)

pX(x)

=
∑
x∈X

∑
y∈Y

pX,Y (x, y)
(
log pX|Y (x|y)− pX,Y (x, y)pX(x)

)
= H(X)−H(X|Y ),

or similarly
I(X;Y ) = H(Y )−H(Y |X).

Another way to relate mutual information to entropy is

I(X;Y ) = H(X) +H(Y )−H(X,Y )
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since

H(Y |X) = −
∑
x∈X

∑
y∈Y

pX,Y (x, y) log pY |X(y|x)

= −
∑
x∈X

∑
y∈Y

pX,Y (x, y) log pX,Y (x, y) +
∑
x∈X

∑
y∈Y

pX,Y (x, y) log pX(x)

= H(X,Y )−H(X).

Remark. Note that

I(X;X) = H(X)−H(X|X) = H(X)

so entropy is sometimes called self information.

To summarize

Proposition 66.

I(X;Y ) = H(X)−H(X|Y )

I(X;Y ) = H(Y )−H(Y |X)

I(X;Y ) = H(X) +H(Y )−H(X,Y )

I(X;Y ) = I(Y ;X)

I(X;X) = H(X)

Proposition 67 (Chain Rule for Entropy). Let X1, X2, . . . , Xn be drawn ac-
cording to p(x1, . . . , xn). Then,

H(X1, X2, . . . , Xn) = H(X1) +

n∑
i=2

H(Xi|X1, . . . , Xi−1).

Proof. We can use induction on n. We have already established that the propo-
sition holds for n = 2. Suppose the proposition holds for n < k for k ≥ 2 and
consider k random variables X1, X2, . . . , Xk drawn according to p(x1, . . . , xk).
Then,

H(X1, . . . , Xk) = −
∑

x1,...,xk∈X k

p(x1, . . . , xk) log p(x1, . . . , xk)

= −
∑
x1∈X

∑
x2,...,xk∈X k−1

p(x1)p(x2, . . . , xk|x1) log[p(x1)p(x2, . . . , xk|x1)]

= −
∑
x1∈X

p(x1) log p(x1)
∑

x2,...,xk∈X k−1

p(x2, . . . , xk|x1)

−
∑
x1∈X

p(x1)
∑

x2,...,xk∈X k−1

p(x2, . . . , xk|x1) log p(x2, . . . , xk|x1)

= H(X1) +H(X2, . . . , Xk|X1).

Noting the definition of conditional entropy and applying the induction hypoth-
esis to H(X2, . . . , Xk|X1) finishes the proof.
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A similar result holds for mutual information, which uses the concept of
conditional mutual information.

Definition 22. The conditional mutual information of random variables
X and Y given Z is defined by

I(X,Y ;Z) = H(X|Z)−H(X|Y,Z) = Ep(x,y,z) log
p(X,Y |Z

p(X|Z)p(Y |Z)
.

Proposition 68 (Chain Rule for Mutual Information).

I(X1, . . . , Xn;Y ) =

n∑
i=1

I(Xi;Y |X1, . . . , Xi−1)

Proof.

I(X1, . . . , Xn;Y ) = H(X1, . . . , Xn)−H(X1, . . . , Xn|Y )

=

n∑
i=1

H(Xi|X1, . . . , Xi−1)−
n∑
i=1

H(Xi|X1, . . . , Xi−1, Y )

=

n∑
i=1

[H(Xi|X1, . . . , Xi−1)−H(Xi|X1, . . . , Xi−1, Y )]

=

n∑
i=1

I(Xi;Y |X1, . . . , Xi−1).

Proposition 69 (Information Inequality). Let p(x) and q(x) be two probability
mass functions for x ∈X . Then

D(p||q) ≥ 0

with equality if and only if

∀x ∈X ; p(x) = q(x).

Proof. Letting X ∼ p and noting that f(x) = − log x is a convex function, we
can apply Jensen’s inequality to random variables q(X)/p(X) to get

− logE
[
q(X)

p(X)

]
≤ E

[
− log

q(X)

p(X)

]
= −

∑
x∈X

p(x) log
q(x)

p(x)
= D(p||q),

but

E
[
q(X)

p(X)

]
=
∑
x∈X

p(x)
q(x)

p(x)
=
∑
x∈X

q(x) = 1.

So,

0 = − log 1 = − logE
[
q(X)

p(X)

]
≤= −

∑
x∈X

p(x) log
q(x)

p(x)
= D(p||q).

Equality only holds when q(X)/p(X) = 1, due to strict convexity of f .
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Corollary 5 (Non-negativity of Mutual Information). For any two random
variables X and Y ,

I(X;Y ) ≥ 0,

with equality if and only if X and Y are independent

Proof. I(X;Y ) = D(pX,Y (x, y)||pX(x)pY (y)) ≥ 0 with equality if and only if
pX,Y (x, y) = pX(x)pY (y); i.e. X and Y being independent.

13 Markov Processes

Let {Xi; i ∈ Z≥0} be a sequence of discrete random variables that take values
in some countable set S called the state space.

Definition 23. The process X is a Markov chain if is satisfies the Markov
condition:

P (Xn+1 = s|X0 = x0, X1 = x1, . . . , Xn = xn) = P (Xn+1 = s|Xn = xn) .

for all n ≥ 0 and s ∈ S.

Remark. By conditioning on Xn+1, . . . , Xn+m−1 we can see that the Markov
property is equivalent to

P (Xm+n = s|X0 = x0, . . . , Xm = xm) = P (Xm+n = s|Xm = xm)

for any m,n ≥ 0. Using this property we can show that for any increasing
sequence of integers n1 < n2 < . . . < nk ≤ n we have

P (Xn = s|Xn1 = x1, . . . , Xnk = xk)

=
∑

xj ;j∈J
P (Xn = s|X0 = x0, . . . , Xnk = xk)P (∪j∈JXj = xj |Xn1

= x1, . . . , Xnk = xk)

= P (Xn = s|Xnk = xk)
∑

xj ;j∈J
P (∪j∈JXj = xj |Xn1

= x1, . . . , Xnk = xk)

= P (Xn = s|Xnk = xk) .

where J is the set of all non-negative integers less than nk that don’t appear
in the sequence {nk}.

Definition 24. The chain X is called homogeneous if for any n ∈ Z≥0 and
i, j ∈ S

P (Xn+1 = j|Xn = i) = P (X1 = j|X0 = i) .

The transition matrix P = (pij) is the |S| × |S| matrix of transition prob-
abilities

pij = P (Xn+1 = j|Xn = i) .

Throughout the rest of this section, Markov chains are assumed to be ho-
mogeneous unless otherwise specified.
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Remark. Given the above definition, we observe that the i-th row of the tran-
sition matrix specifies the conditional probability distribution of Xn+1 given
Xn = i, hence

1. Every element of the i-th row, and therefore every element of P must be
non-negative.

2. The elements of the i-th row should sum up to one; i.e.
∑
j pij = 1 for all

i.

Definition 25. The n-step transition matrix P(m,m+n) = (pij(m,m+n))
is the matrix of n-step transition probabilities (pij(m,m+n)) = P (Xm+n = j|Xm = i).

Proposition 70 (Chapman-Kolmogorov Equations).

pij(m,m+ n+ r) =
∑
k

pik(m,m+ r)pkj(m+ r,m+ n+ r)/

Therefore, P(m,m+n+r) = P(m,m+r)P(m+r,m+n+r), and P(m,m+n) =
Pn, the n-th power of P.

Proof. Conditioning on Xm+r when when calculating P (Xm+n+r = j|Xm = i)
we get

P (Xm+n+r = j|Xm = i) =
∑
k

P (Xm+n+r = j|Xm+r = k,Xm = i)P (Xm+r = j|Xm = i)

=
∑
k

P (Xm+n+r = j|Xm+r = k)P (Xm+r = j|Xm = i)

where to get the last equality we have used the stronger form of Markov condi-
tion as discussed in the remarks after definition 23.

Lemma 2. Let µ
(n)
i = P (Xn = i) be the mass function of Xn, and write µ(n)

for the row vector with entries (µ
(n)
i : i ∈ S). Then,

µ(m+n) = µ(m)Pn µ(n) = µ(0)Pn

Proof.

µ
(m+n)
i = P (Xm+n = i) =

∑
j

P (Xm+n = i|Xm = j)P (Xm = j)

=
∑
j

µ
(m)
j Pji = (µ(m)P)i.

Example 13 (Simple Random Walk). The simple random walk on integers has
state space S = Z and transition probabilities

pij =


p j = i+ 1

q = 1− p j = i− 1

0 o.w.
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If we start at state i and after n steps end up at state i having taken x steps
forward and y steps backward, we must have{

x+ y = n
i+ x− y = j

and hence

x =
n+ j − i

2
.

Therefore, the n-step transition probabilities are given by

pij(n) =

{(
n
x

)
pxqn−x 2|n+ j − i

0 o.w.
where x =

n+ j − i
2

.

Example 14 (Branching Process). We can model a branching process where G
is the probability generating function of the offspring distribution as a Markov
chain with state space being S = Z≥0 and the transition probability pij being the
coefficient of sj in G(s)i. Also, since we know that the probability generating
function of the offspring distribution after n generations is Gn, which is G
composed with itself for n times, we can conclude that the n-step transition
probability pij(n) is the coefficient of sj in Gn(s)i.

13.1 Classification of States

Definition 26. State i is called persistent (or recurrent) if

P (Xn = ifor some n ≥ 1|X0 = i) = 1,

which is to say that the probability of eventual return to i, having started from
i, is 1. If this probability is strictly less than 1, the state is called transient.

Similar to our analysis of the simple random walk, we can define fij(n) to
be the probability of returning to j after n steps for the first time, starting from
i; that is,

fij(n) = P (X1 6= j,X2 6= j, . . . , Xn−1 6= j,Xn = j|X0 = i) .

We can express the probability of ever visiting state j starting from state i, fij ,
as

fij =

∞∑
n=1

fij(n).

So j is persistent if and only if pjj = 1. Our objective is to relate persistence to
the transition probabilities. Consider the probability generating functions

Pij(s) =

∞∑
n=0

pij(n)sn Fij(s) =

∞∑
n=0

fij(n)sn

where we have adopted the convention that fij(0) = 0 and pij(0) = δij . We
have the following result.
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Proposition 71.
Pij(s) = δij + Fij(s)Pjj(s)

Proof. Conditioning on the first time we visit state j in pij(n) for n ≥ 1 we have

pij(n) =

n∑
k=1

fij(k)pjj(n− k).

Given our convention that fij(0) = 0 we can start the sum from k = 0 and
observe that

pij(n)sn =

n∑
k=0

fij(k)skpjj(n− k)sn−k

so

∞∑
n=0

pij(n)sn = δijs
0 +

∞∑
n=1

n∑
k=0

fij(k)skpjj(n− k)sn−k

= δij + Fij(s)Pjj(s)− fij(0)pjj(0)

= δij + Fij(s)Pjj(s).

Proposition 72. 1. State j is persistent if
∑
n pjj(n) = ∞, and if this holds∑

n pij(n) =∞ for all i such that fij > 0.

2. State j is transient if
∑
n pjj(n) <∞, and if this holds then

∑
n pij(n) <∞

for all i.

Proof. 1. From the proposition we have

Pjj(s) = 1 + Pjj(s)Fjj(s) =⇒ Pjj(s) =
1

1− Fjj(s)
.

Note that
lim
s→1

Pjj(s) =∞ ⇐⇒ Fjj(s) = 1.

Since Pjj is a probability generating function, we must have

Pjj(1) = lim
s→1

Pjj(s)

Note that Fjj(s) = 1 if and only if state j is persistent. Also, note that if
state j is persistent

lim
s→1

Pij(s) = lim
s→1

δij + Fij(s)Pjj(s) =∞.

so
∑
n pij(n) =∞.
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2. Similar to part 1, state j is transient if and only if Fjj(1) < 1 which is
equivalent to

Pjj(1) = lim
s→1

Pjj(s) <∞.

which also implies that

lim
s→1

Pij(s) = lim
s→1

δij + Fij(s)Pjj(s) <∞.

Remark. Use Borel-Cantelli lemmas to prove.
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